当前位置: X-MOL 学术Nonlinear Process. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Nonlinear Processes in Geophysics ( IF 2.2 ) Pub Date : 2020-02-25 , DOI: 10.5194/npg-27-75-2020
Bruce T. Tsurutani , Gurbax S. Lakhina , Rajkumar Hajra

Abstract. Major geomagnetic storms are caused by unusually intense solar wind southward magnetic fields that impinge upon the Earth's magnetosphere (Dungey, 1961). How can we predict the occurrence of future interplanetary events? Do we currently know enough of the underlying physics and do we have sufficient observations of solar wind phenomena that will impinge upon the Earth's magnetosphere? We view this as the most important challenge in space weather. We discuss the case for magnetic clouds (MCs), interplanetary sheaths upstream of interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs) and solar wind high-speed streams (HSSs). The sheath- and CIR-related magnetic storms will be difficult to predict and will require better knowledge of the slow solar wind and modeling to solve. For interplanetary space weather, there are challenges for understanding the fluences and spectra of solar energetic particles (SEPs). This will require better knowledge of interplanetary shock properties as they propagate and evolve going from the Sun to 1 AU (and beyond), the upstream slow solar wind and energetic “seed” particles. Dayside aurora, triggering of nightside substorms, and formation of new radiation belts can all be caused by shock and interplanetary ram pressure impingements onto the Earth's magnetosphere. The acceleration and loss of relativistic magnetospheric “killer” electrons and prompt penetrating electric fields in terms of causing positive and negative ionospheric storms are reasonably well understood, but refinements are still needed. The forecasting of extreme events (extreme shocks, extreme solar energetic particle events, and extreme geomagnetic storms (Carrington events or greater)) are also discussed. Energetic particle precipitation into the atmosphere and ozone destruction are briefly discussed. For many of the studies, the Parker Solar Probe, Solar Orbiter, Magnetospheric Multiscale Mission (MMS), Arase, and SWARM data will be useful.

中文翻译:

空间天气物理学/太阳-地球物理学 (STP):我们现在所知道的以及当前和未来的挑战是什么

摘要。主要的地磁风暴是由异常强烈的太阳风向南磁场撞击地球磁层引起的(Dungey,1961)。我们如何预测未来行星际事件的发生?我们目前是否对基础物理学有足够的了解,我们是否对将撞击地球磁层的太阳风现象有足够的观察?我们认为这是太空天气中最重要的挑战。我们讨论了磁云 (MC)、行星际日冕物质抛射 (ICME) 上游的行星际鞘、共转相互作用区 (CIR) 和太阳风高速流 (HSS) 的情况。与鞘层和 CIR 相关的磁暴将难以预测,需要对缓慢的太阳风和建模有更好的了解才能解决。对于行星际空间天气,了解太阳高能粒子 (SEP) 的能量密度和光谱存在挑战。这将需要更好地了解行星际激波特性,因为它们从太阳传播和演化到 1 个天文单位(以及更远)、上游慢太阳风和高能“种子”粒子。日侧极光、夜间亚暴的触发以及新辐射带的形成都可能是由冲击和行星际撞击压力撞击地球磁层引起的。相对论性磁层“杀手”电子的加速和损失以及引起正负电离层风暴的快速穿透电场已经有了很好的理解,但仍然需要改进。极端事件(极端冲击、还讨论了极端太阳高能粒子事件和极端地磁风暴(卡林顿事件或更大事件))。简要讨论了大气中的高能粒子降水和臭氧破坏。对于许多研究,帕克太阳探测器、太阳轨道器、磁层多尺度任务 (MMS)、Arase 和 SWARM 数据将非常有用。
更新日期:2020-02-25
down
wechat
bug