当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities
Physics of Fluids ( IF 4.1 ) Pub Date : 2020-09-01 , DOI: 10.1063/5.0022858
M Vadivukkarasan 1 , K Dhivyaraja 2 , Mahesh V Panchagnula 2
Affiliation  

Understanding the breakup morphology of an expelled respiratory liquid is an emerging interest in diverse fields to enhance the efficacious strategies to attenuate disease transmission. In this paper, we present the possible hydrodynamic instabilities associated with expelling the respiratory liquid by a human. For this purpose, we have performed experiments with a cylindrical soap film and air. The sequence of the chain of events was captured with high-speed imaging. We have identified three mechanisms, namely, Kelvin–Helmholtz (K–H) instability, Rayleigh–Taylor (R–T) instability, and Plateau–Rayleigh (P–R) instability, which are likely to occur in sequence. Furthermore, we discuss the multiple processes responsible for drop fragmentation. The processes such as breakup length, rupture, ligament, and drop formation are documented with a scaling factor. The breakup length scales with We−0.17, and the number of ligaments scales as Bo. In addition, the thickness of the ligaments scales as We−0.5. Here, We and Bo represent the Weber and Bond numbers, respectively. It was also demonstrated that the flapping of the liquid sheet is the result of the K–H mechanism, and the ligaments formed on the edge of the rim appear due to the R–T mechanism, and finally, the hanging drop fragmentation is the result of the P–R instability. Our study highlights that the multiple instabilities play a significant role in determining the size of the droplets while expelling a respiratory liquid. This understanding is crucial to combat disease transmission through droplets.

中文翻译:

排出的呼吸液体的破碎形态:从流体动力学不稳定性的角度

了解排出的呼吸液体的分解形态是各个领域的新兴兴趣,以增强减轻疾病传播的有效策略。在本文中,我们介绍了与人类排出呼吸液体相关的可能的流体动力学不稳定性。为此,我们用圆柱形肥皂膜和空气进行了实验。事件链的顺序是通过高速成像捕获的。我们已经确定了三种可能依次发生的机制,即开尔文-亥姆霍兹 (K-H) 不稳定性、瑞利-泰勒 (R-T) 不稳定性和高原-瑞利 (P-R) 不稳定性。此外,我们讨论了负责丢弃碎片的多个进程。断裂长度、断裂、韧带、和液滴的形成用比例因子记录。断裂长度与 We-0.17 成比例,韧带数量与 Bo 成比例。此外,韧带的厚度为 We−0.5。这里,We 和 Bo 分别代表韦伯数和邦德数。也证明了液片的拍打是K-H机制的结果,边缘边缘形成的韧带由于R-T机制而出现,最后,悬滴破碎是结果P-R 不稳定性。我们的研究强调,多重不稳定性在确定排出呼吸液体时液滴的大小方面起着重要作用。这种理解对于通过飞沫传播疾病至关重要。此外,韧带的厚度为 We−0.5。这里,We 和 Bo 分别代表韦伯数和邦德数。也证明了液片的拍打是K-H机制的结果,边缘边缘形成的韧带由于R-T机制而出现,最后,悬滴破碎是结果P-R 不稳定性。我们的研究强调,多重不稳定性在确定排出呼吸液体时液滴的大小方面起着重要作用。这种理解对于通过飞沫传播疾病至关重要。此外,韧带的厚度为 We−0.5。这里,We 和 Bo 分别代表韦伯数和邦德数。也证明了液片的拍打是K-H机制的结果,边缘边缘形成的韧带由于R-T机制而出现,最后,悬滴破碎是结果P-R 不稳定性。我们的研究强调,多重不稳定性在确定排出呼吸液体时液滴的大小方面起着重要作用。这种理解对于通过飞沫传播疾病至关重要。由于 R-T 机制,在边缘形成的韧带出现,最后,悬滴断裂是 P-R 不稳定性的结果。我们的研究强调,多重不稳定性在确定排出呼吸液体时液滴的大小方面起着重要作用。这种理解对于通过飞沫传播疾病至关重要。由于 R-T 机制,在边缘形成的韧带出现,最后,悬滴断裂是 P-R 不稳定性的结果。我们的研究强调,多重不稳定性在确定排出呼吸液体时液滴的大小方面起着重要作用。这种理解对于通过飞沫传播疾病至关重要。
更新日期:2020-09-01
down
wechat
bug