当前位置: X-MOL 学术Appl. Bionics Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Novel Fully Passive Treadmill Training Paradigm for Lower Limb Therapeutic Intervention
Applied Bionics and Biomechanics ( IF 1.8 ) Pub Date : 2013 , DOI: 10.3233/abb-130078
M. Saiful Huq, M. O. Tokhi

A simulation based study of a completely new form of body-weight supported treadmill training (BWSTT) technique which is fully passive in nature is presented in this paper. The approach does not require any powered means at the lower limbs and is implemented using a combination of coordinated joint locking/unlocking and flexible torque transfer mechanisms. The hip extension pertaining to the stance phase of the gait cycle is achieved through the stance foot being literally dragged by the treadmill belt while the required manoeuvring of the trunk is expected to be accomplished by the voluntary arm-support from the subject. The swing phase, on the other hand, is initiated through appropriately coupling the swing knee with the contralateral extending hip and eventually achieve full knee extension through switching the treadmill speed to a lower value. Considering adequate support from the able arms, the process effectively turns the frictional force at the foot-treadmill belt interface into an agent causing the required whole body mechanical energy fluctuation during the gait cycle.The simulation platform consists of a dynamic planer (sagittal) full body humanoid model along with the treadmill model developed within a CAD based software environment interfaced with passive viscoelastic joint properties implemented in Simulink. The voluntary upper body effort as well as control of the gait cycle are also developed within MATLAB/Simulink environment. The gait cycle generated using the new concept is thoroughly investigated through this simulation study.

中文翻译:

新型完全被动跑步机训练范式的下肢治疗干预的开发

本文提出了一种基于模拟的全新形式的体重支持跑步机训练(BWSTT)技术,该技术本质上是完全被动的。该方法在下肢处不需要任何动力装置,并且通过协调的关节锁定/解锁和灵活的扭矩传递机构的组合来实现。与步态周期的站立阶段有关的髋部伸展是通过在跑步机皮带上实际拖曳站立脚来实现的,而所需的躯干操纵则有望通过受试者的自愿手臂支撑来完成。另一方面,摆动阶段是通过将摆动膝盖与对侧伸展的髋部适当地耦接而开始的,并且最终通过将跑步机速度切换到较低的值来实现完全的膝盖伸展。考虑到有能力的手臂的充分支持,该过程有效地将脚踏跑步机皮带界面上的摩擦力转变为导致步态周期中所需的全身机械能波​​动的因素。模拟平台包括一个完整的动态刨床(矢状)人体人形模型以及在基于CAD的软件环境中开发的跑步机模型,并与Simulink中实现的被动粘弹性关节特性相接口。在MATLAB / Simulink环境中还开发了自愿的上身力量以及步态周期控制。通过此模拟研究,将彻底研究使用新概念生成的步态周期。该过程有效地将脚-跑步机皮带界面上的摩擦力转变为导致步态周期中所需的全身机械能波​​动的因素。模拟平台包括动态刨床(矢状)全身人形模型以及跑步机模型在基于CAD的软件环境中开发,并与Simulink中实现的被动粘弹性接头特性相接口。在MATLAB / Simulink环境中还开发了自愿的上身力量以及步态周期控制。通过此模拟研究,将彻底研究使用新概念生成的步态周期。该过程有效地将脚-跑步机皮带界面上的摩擦力转变为导致步态周期中所需的全身机械能波​​动的因素。模拟平台包括动态刨床(矢状)全身人形模型以及跑步机模型在基于CAD的软件环境中开发,并与Simulink中实现的被动粘弹性接头特性相接口。在MATLAB / Simulink环境中还开发了自愿的上身力量以及步态周期控制。通过此模拟研究,将彻底研究使用新概念生成的步态周期。该模拟平台由动态刨床(矢状)全身人形模型以及在基于CAD的软件环境中开发的跑步机模型组成,该模型与Simulink中实现的被动粘弹性关节特性相接口。在MATLAB / Simulink环境中还开发了自愿的上身力量以及步态周期控制。通过此模拟研究,将彻底研究使用新概念生成的步态周期。该模拟平台由动态刨床(矢状)全身人形模型以及在基于CAD的软件环境中开发的跑步机模型组成,该模型与Simulink中实现的被动粘弹性关节特性相接口。在MATLAB / Simulink环境中还开发了自愿的上身力量以及步态周期控制。通过此模拟研究,将彻底研究使用新概念生成的步态周期。
更新日期:2020-09-25
down
wechat
bug