当前位置: X-MOL 学术Appl. Bionics Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards Physarum Engines
Applied Bionics and Biomechanics ( IF 1.8 ) Pub Date : 2012 , DOI: 10.3233/abb-2012-0059
Soichiro Tsuda, Jeff Jones, Andrew Adamatzky

The slime mould Physarumpolycephalum is a suitable candidate organism for soft-matter robotics because it exhibits controllable transport, movement and guidance behaviour. Physarum may be considered as a smart computing and actuating material since both its motor and control systems are distributed within its undifferentiated tissue and can survive trauma such as excision, fission and fusion of plasmodia. Thus it may be suitable for exploring the generation and distribution of micro-actuation in individual units or planar arrays. We experimentally show how the plasmodium of Physarum is shaped to execute controllable oscillatory transport behaviour applicable in small hybrid engines. We measure the lifting force of the plasmodium and demonstrate how protoplasmic transport can be influenced by externally applied illumination stimuli. We provide an exemplar vehicle mechanism by coupling the oscillations of the plasmodium to drive the wheels of a Braitenberg vehicle and use light stimuli to effect a steering mechanism. Using a particle model of Physarum we show how emergent travelling wave patterns produced by competing oscillatory domains may be used to to generate spatially represented actuation patterns. We demonstrate different patterns of controllable motion, including linear, reciprocal, rotational and helical, and demonstrate in simulation how dynamic oscillatory patterns may be translated into motive forces for simple transport of substances within a patterned environment.

中文翻译:

迈向Physarum引擎

粘液霉菌Physarum polycephalum是软物质机器人的合适候选生物,因为它具有可控的运输,运动和引导行为。Physarum可以被认为是一种智能的计算和执行材料,因为它的电机和控制系统均分布在未分化的组织内,并且可以抵抗疟原虫的切除,裂变和融合等创伤。因此,它可能适合于探索单个单元或平面阵列中微驱动的产生和分布。我们通过实验展示了Phys的疟原虫形状适于执行适用于小型混合动力发动机的可控振荡传输行为。我们测量了疟原虫的举升力,并演示了原生质运输如何受到外部施加的照明刺激的影响。我们通过耦合疟原虫的振动来驱动Braitenberg车辆的车轮并使用光刺激来实现转向机构,从而提供了一种示例性的车辆机构。使用Physarum的粒子模型我们展示了如何通过竞争性振荡域产生的新兴行波模式可用于生成空间表示的致动模式。我们演示了可控制运动的不同模式,包括线性,往复运动,旋转和螺旋运动,并在仿真中演示了如何将动态振荡模式转换为原动力,以便在有图案的环境中简单地运输物质。
更新日期:2020-09-25
down
wechat
bug