当前位置: X-MOL 学术J. Chem. Eng. Data › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comment on “Measurements of Vapor Pressures of Aqueous Solutions in the NaCl–KCl–H2O System from 493.15 to 693.25 K in a Fused Silica Capillary High-Pressure Optical Cell”
Journal of Chemical & Engineering Data ( IF 2.0 ) Pub Date : 2020-09-24 , DOI: 10.1021/acs.jced.0c00710
Luis A. Cisternas 1
Affiliation  

Re: Ying Chen and I-Ming Chou, Measurements of Vapor Pressures of Aqueous Solutions in the NaCl–KCl–H2O System from 493.15 to 693.25 K in a Fused Silica Capillary High-Pressure Optical Cell.(1) In the article cited above, vapor pressures of aqueous solutions containing NaCl and KCl were measured at temperatures from 493.15 to 693.25 K. These measurements are valuable in geological processes because these aqueous solutions are one of the most common types of geological fluids. These geological processes include magmatic activities, hydrothermal and metamorphic reactions, and the formation of minerals, ores, oil, and natural gases. It is highlighted in the article that there is a lack of both correlation models and experimental data at high temperatures (above 373 K), which is true. In this comment, it is verified that the Cisternas and Lam’ model(2,3) can be easily applied to correlate and predict the data reported by Chen and Chou.(1) Cisternas and Lam developed a model for vapor pressure over electrolyte solutions, which uses a single empirical constant for each electrolyte and five constants for the solvent (see Supporting Information). The model can be applied to solutions that contain mixed electrolytes as well. This model has become the most commonly used empirical correlation for vapor pressure prediction in membrane-based liquid desiccant air dehumidification.(4) Furthermore, its ability to model vapor pressure of multicomponent electrolyte solutions such as seawater(5) and carbonate aqueous systems has been demonstrated.(6) Although the water parameters of the Cisternas–Lam model are only valid for temperatures between 273 and 413 K, the model was compared with the high-temperature data reported by Chen and Chou.(1) The original salt parameters were used, these are KNaCl = 0.39015 and KKCl = 0.18651. The predictions are good as it is shown in Table 1, with R2 of 0.9989, 0.9917, 0.9920, and 0.9960 for the H2O, H2O–NaCl, H2O–KCl, and H2O–NaCl–KCl systems, respectively. To enhance the modeling and prediction capabilities, the water parameters Cs and Ds were adjusted to the water vapor pressure in the temperature range of 496–650 K. The new values are Cs = 7.2873 and Ds = 1789.6279; these new values allow a decrease in the root mean squared error (RMSE) from 0.249 to 0.094 MPa and the mean absolute error (MAE) from 0.210 to 0.07 MPa. Also, the salt parameter, K, was adjusted based on the experimental values of the systems NaCl–H2O and KCl–H2O at high-temperature. The new values are KNaCl = 0.76293 and KKCl = 0.44996. These new values also allow an improvement in the performance of the model. Then, using these new values, the vapor pressure of the mixture H2O–NaCl–KCl was predicted. Table 2 resumes the metric of the correlation and prediction of the vapor pressure, and Figure 1 compares the experimental and predicted values for the H2O–NaCl–KCl system. Note that in this last system, the capabilities of the Cisternas–Lam model for prediction is proven. Observe that the KNaCl and KKCl values were determined with solutions with molalities up to 2 mol/kg, but the prediction shown in Figure 1 extends up to 4 mol/kg. RMSE, MAE, and R2 denote root mean squared error, mean absolute error, and coefficient of determination, respectively. RMSE, MAE, and R2 connotes root mean squared error, mean absolute error, and coefficient of determination, respectively. Figure 1. Experimental versus predicted vapor pressure for the NaCl–KCl–H2O system up to 4 mol/kg. Recapitulating, the Cisternas–Lam model with the original parameters gives a good prediction of vapor pressure at high-temperature. If two of the water parameters and the electrolyte parameter of Cisternas–Lam model are recalculated for the new temperature range, excellent correlations are obtained. Besides, the prediction of the vapor pressure for mixed electrolytes gives excellent results as well. Therefore, the Cisternas–Lam model can be applied in high-temperature situations such as geological processes. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jced.0c00710.
  • Brief description of the Cisternas–Lam model and its application to NaCl and KCl aqueous solutions (PDF)
Brief description of the Cisternas–Lam model and its application to NaCl and KCl aqueous solutions (PDF) The author declares no competing financial interest. Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html. This article references 6 other publications.


中文翻译:

关于“熔融石英毛细管高压光学电池中NaCl–KCl–H 2 O系统中水溶液的蒸汽压从493.15到693.25 K的测量”的评论

回复:陈颖和周宜明,NaCl–KCl–H 2中水溶液的蒸气压测量在熔融石英毛细管高压光学电池中从493.15至693.25 K的O系统。(1)在以上引用的文章中,在493.15至693.25 K的温度下测量了含NaCl和KCl的水溶液的蒸汽压。这些测量值很有价值因为这些水溶液是最常见的地质流体类型之一,所以它们在地质过程中的应用最为广泛。这些地质过程包括岩浆活动,热液和变质反应,以及矿物,矿石,石油和天然气的形成。该文章强调指出,在高温(高于373 K)下都缺乏相关模型和实验数据,这是事实。在此评论中,证明了Cisternas和Lam模型(2,3)可以轻松地用于关联和预测Chen和Chou报告的数据。(1)Cisternas和Lam开发了一种电解质溶液上蒸气压的模型,该模型对每种电解质使用一个经验常数,对溶剂使用五个常数(请参阅支持信息)。该模型也可以应用于包含混合电解质的溶液。该模型已成为膜基液体干燥剂空气除湿中蒸汽压预测最常用的经验相关性。(4)此外,它具有建模多组分电解质溶液(例如海水)(5)和碳酸盐水溶液系统的蒸汽压的能力。 (6)尽管Cisternas–Lam模型的水参数仅对273至413 K之间的温度有效,但将该模型与Chen和Chou报告的高温数据进行了比较。(1)原始盐参数为用过的,这些是 每种电解质使用一个经验常数,而溶剂使用五个常数(请参阅支持信息)。该模型也可以应用于包含混合电解质的溶液。该模型已成为膜基液体干燥剂空气除湿中蒸汽压预测最常用的经验相关性。(4)此外,它具有建模多组分电解质溶液(例如海水)(5)和碳酸盐水溶液系统的蒸汽压的能力。 (6)尽管Cisternas–Lam模型的水参数仅对273至413 K之间的温度有效,但将该模型与Chen和Chou报告的高温数据进行了比较。(1)原始盐参数为用过的,这些是 每种电解质使用一个经验常数,而溶剂使用五个常数(请参阅支持信息)。该模型也可以应用于包含混合电解质的溶液。该模型已成为膜基液体干燥剂空气除湿中蒸汽压预测最常用的经验相关性。(4)此外,它具有建模多组分电解质溶液(例如海水)(5)和碳酸盐水溶液系统的蒸汽压的能力。 (6)尽管Cisternas–Lam模型的水参数仅对273至413 K之间的温度有效,但将该模型与Chen和Chou报告的高温数据进行了比较。(1)原始盐参数为用过的,这些是ķ的NaCl = 0.39015和ķ氯化钾= 0.18651。如表1所示,预测结果很好,H 2 O,H 2 O–NaCl,H 2 O–KCl和H 2 O–NaCl–KCl的R 2为0.9989、0.9917、0.9920和0.9960系统。为了增强建模和预测能力,将水参数C sD s调整为496–650 K温度范围内的水蒸气压力。新值是C s = 7.2873和D s= 1789.6279; 这些新值使均方根误差(RMSE)从0.249降低到0.094 MPa,平均绝对误差(MAE)从0.210降低到0.07 MPa。另外,盐参数K是根据NaCl–H 2 O和KCl–H 2 O系统在高温下的实验值进行调整的。新值是K NaCl = 0.76293和K KCl = 0.44996。这些新值还可以改善模型的性能。然后,使用这些新值,混合物H 2的蒸气压可以预测到O–NaCl–KCl。表2恢复了蒸气压相关性和预测的度量,图1比较了H 2 O–NaCl–KCl系统的实验值和预测值。请注意,在最后一个系统中,证明了Cisternas–Lam模型的预测能力。观察到K NaClK KCl值是由摩尔浓度最高为2 mol / kg的溶液确定的,但图1中所示的预测延伸至最高4 mol / kg。RMSE,MAE和R 2分别表示均方根误差,平均绝对误差和确定系数。RMSE,MAE和R 2分别表示均方根误差,平均绝对误差和确定系数。图1. NaCl–KCl–H 2的实验与预计蒸气压O系统最高可达4 mol / kg 概括地说,具有原始参数的Cisternas-Lam模型可以很好地预测高温下的蒸气压。如果在新温度范围内重新计算了Cisternas–Lam模型的水参数和电解质参数中的两个参数,则将获得极好的相关性。此外,对于混合电解质的蒸气压的预测也给出了极好的结果。因此,Cisternas–Lam模型可以应用于高温情况,例如地质过程。可从https://pubs.acs.org/doi/10.1021/acs.jced.0c00710免费获得支持信息。
  • Cisternas–Lam模型的简要说明及其在NaCl和KCl水溶液中的应用(PDF)
Cisternas-Lam模型的简要说明及其在NaCl和KCl水溶液中的应用(PDF)作者宣称没有竞争性的财务利益。无需订阅ACS Web版本即可获得电子支持信息文件。美国化学学会在任何可版权保护的支持信息中均拥有版权权益。ACS网站上提供的文件只能下载供个人使用。未经美国化学学会许可,不得以其他方式允许用户以机器可读形式或任何其他形式全部或部分复制,重新发布,重新分发或出售ACS网站上的任何支持信息。为了获得复制,重新发布和重新分发此材料的许可,请求者必须通过RightsLink权限系统处理自己的请求。有关如何使用RightsLink权限系统的信息,请访问http://pubs.acs.org/page/copyright/permissions.html。本文引用了其他6个出版物。
更新日期:2020-10-08
down
wechat
bug