当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Edge Intelligence Empowered UAVs for Automated Wind Farm Monitoring in Smart Grids
arXiv - CS - Systems and Control Pub Date : 2020-09-23 , DOI: arxiv-2009.11256
Hwei-Ming Chung, Sabita Maharjan, Yan Zhang, Frank Eliassen, and Tingting Yuan

With the exploitation of wind power, more turbines will be deployed at remote areas possibly with harsh working conditions (e.g., offshore wind farm). The adverse working environment may lead to massive operating and maintenance costs of turbines. Deploying unmanned aerial vehicles (UAVs) for turbine inspection is considered as a viable alternative to manual inspections. An important objective of automated UAV inspection is to minimize the flight time of the UAVs to inspect all the turbines. A first contribution of this paper is thus formulating an optimization problem to compute the optimal routes for turbine inspection satisfying the above goal. On the other hand, the limited computational capability on UAVs can be used to increase the power generation of wind turbine. Power generation from the turbines can be optimized by controlling the yaw angle of the turbines. Forecasting wind conditions such as wind speed and wind direction is crucial for solving both optimization problems. Therefore, UAVs can utilize their limited computational capability to perform wind forecasting. In this way, UAVs form edge intelligence in offshore wind farm. With the forecasted wind conditions, we design two algorithms to solve the formulated problems, and then evaluate the proposed methods with realworld data. The results reveal that the proposed methods offer an improvement of 44% of the power generation from the turbine compared to hour-ahead forecasting and 25% reduction of the flight time of the UAVs compared to the chosen baseline method.

中文翻译:

边缘智能赋能无人机,用于智能电网中的自动风电场监控

随着风力发电的开发,更多的涡轮机将部署在工作条件可能恶劣的偏远地区(例如海上风电场)。不利的工作环境可能导致涡轮机的大量运行和维护成本。部署无人驾驶飞行器 (UAV) 进行涡轮机检查被认为是人工检查的可行替代方案。自动化无人机检查的一​​个重要目标是最大限度地减少无人机检查所有涡轮机的飞行时间。因此,本文的第一个贡献是制定优化问题来计算满足上述目标的涡轮机检查的最佳路线。另一方面,无人机有限的计算能力可用于增加风力涡轮机的发电量。可以通过控制涡轮机的偏航角来优化涡轮机的发电量。预测风速和风向等风况对于解决这两个优化问题至关重要。因此,无人机可以利用其有限的计算能力来进行风力预测。这样,无人机在海上风电场形成边缘智能。根据预测的风况,我们设计了两种算法来解决公式化的问题,然后用真实世界的数据评估所提出的方法。结果表明,与提前一小时预测相比,所提出的方法使涡轮机的发电量提高了 44%,与选择的基线方法相比,无人机的飞行时间减少了 25%。预测风速和风向等风况对于解决这两个优化问题至关重要。因此,无人机可以利用其有限的计算能力来进行风力预测。这样,无人机在海上风电场形成边缘智能。根据预测的风况,我们设计了两种算法来解决公式化的问题,然后用真实世界的数据评估所提出的方法。结果表明,与提前一小时预测相比,所提出的方法使涡轮机的发电量提高了 44%,与选择的基线方法相比,无人机的飞行时间减少了 25%。预测风速和风向等风况对于解决这两个优化问题至关重要。因此,无人机可以利用其有限的计算能力来进行风力预测。这样,无人机在海上风电场形成边缘智能。根据预测的风况,我们设计了两种算法来解决公式化的问题,然后用真实世界的数据评估所提出的方法。结果表明,与提前一小时预测相比,所提出的方法使涡轮机的发电量提高了 44%,与选择的基线方法相比,无人机的飞行时间减少了 25%。无人机在海上风电场形成边缘智能。根据预测的风况,我们设计了两种算法来解决公式化的问题,然后用真实世界的数据评估所提出的方法。结果表明,与提前一小时预测相比,所提出的方法使涡轮机的发电量提高了 44%,与选择的基线方法相比,无人机的飞行时间减少了 25%。无人机在海上风电场形成边缘智能。根据预测的风况,我们设计了两种算法来解决公式化的问题,然后用真实世界的数据评估所提出的方法。结果表明,与提前一小时预测相比,所提出的方法使涡轮机的发电量提高了 44%,与选择的基线方法相比,无人机的飞行时间减少了 25%。
更新日期:2020-09-24
down
wechat
bug