当前位置: X-MOL 学术Eur. J. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning models for global coordinate transformations that linearise PDEs
European Journal of Applied Mathematics ( IF 2.3 ) Pub Date : 2020-09-24 , DOI: 10.1017/s0956792520000327
CRAIG GIN , BETHANY LUSCH , STEVEN L. BRUNTON , J. NATHAN KUTZ

We develop a deep autoencoder architecture that can be used to find a coordinate transformation which turns a non-linear partial differential equation (PDE) into a linear PDE. Our architecture is motivated by the linearising transformations provided by the Cole–Hopf transform for Burgers’ equation and the inverse scattering transform for completely integrable PDEs. By leveraging a residual network architecture, a near-identity transformation can be exploited to encode intrinsic coordinates in which the dynamics are linear. The resulting dynamics are given by a Koopman operator matrix K. The decoder allows us to transform back to the original coordinates as well. Multiple time step prediction can be performed by repeated multiplication by the matrix K in the intrinsic coordinates. We demonstrate our method on a number of examples, including the heat equation and Burgers’ equation, as well as the substantially more challenging Kuramoto–Sivashinsky equation, showing that our method provides a robust architecture for discovering linearising transforms for non-linear PDEs.

中文翻译:

用于线性化 PDE 的全局坐标变换的深度学习模型

我们开发了一种深度自动编码器架构,可用于找到将非线性偏微分方程 (PDE) 转换为线性 PDE 的坐标变换。我们的架构受到 Burgers 方程的 Cole-Hopf 变换和完全可积 PDE 的逆散射变换提供的线性化变换的启发。通过利用残差网络架构,可以利用近似恒等变换来编码动态线性的内在坐标。产生的动态由 Koopman 算子矩阵给出ķ. 解码器也允许我们转换回原始坐标。可以通过矩阵的重复乘法来执行多时间步预测ķ在固有坐标中。我们在许多示例上演示了我们的方法,包括热方程和 Burgers 方程,以及更具挑战性的 Kuramoto-Sivashinsky 方程,表明我们的方法为发现非线性 PDE 的线性化变换提供了一个强大的架构。
更新日期:2020-09-24
down
wechat
bug