当前位置: X-MOL 学术Aust. J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Facile Microwave and SnCl 2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones
Australian Journal of Chemistry ( IF 1.1 ) Pub Date : 2020-09-24 , DOI: 10.1071/ch20101
Nicholas S. O'Brien , Adam McCluskey

An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1 % SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99 %. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80 %) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.



中文翻译:

简便的微波和SnCl 2合成2,3-二氢喹唑啉-4(1H)-ones

据报道,具有生物学重要性的支架2,3-二氢喹唑啉-4(1 H)-ones是一种优雅,简单,轻便且健壮的方法。1%SnCl 2催化/微波介导的方法提供了纯净的物质,在120°C的微波照射20分钟后通过冷却和过滤收集。总共制备了41种类似物,分离产率为17–99%。该过程对脂肪族,芳香族,杂环和无环醛具有很高的耐受性,但是呋喃,吡咯和噻吩醛的反应性与亲电子加成和/或Diels-Alder加成的倾向相关。结果,噻吩提供了高产率(80%),而吡咯羧醛没有反应。具有简单的肉桂醛,并在SbCl 3中介导的反应,并与α,β-不饱和醛等价的喹唑啉-4(3 H)-一个,而不是2,3-二氢喹唑啉-4(1 H)-一个。

更新日期:2020-09-24
down
wechat
bug