当前位置: X-MOL 学术SIAM J. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inapproximability of the Independent Set Polynomial in the Complex Plane
SIAM Journal on Computing ( IF 1.2 ) Pub Date : 2020-09-24 , DOI: 10.1137/18m1184485
Ivona Bezáková , Andreas Galanis , Leslie Ann Goldberg , Daniel Štefankovič

SIAM Journal on Computing, Ahead of Print.
We study the complexity of approximating the value of the independent set polynomial $Z_G(\lambda)$ of a graph $G$ with maximum degree $\Delta$ when the activity $\lambda$ is a complex number. When $\lambda$ is real, the complexity picture is well understood, and is captured by two real-valued thresholds $\lambda^*$ and $\lambda_c$, which depend on $\Delta$ and satisfy $0<\lambda^*<\lambda_c$. It is known that if $\lambda$ is a real number in the interval $(-\lambda^*,\lambda_c)$ then there is a fully polynomial time approximation scheme (FPTAS) for approximating $Z_G(\lambda)$ on graphs $G$ with maximum degree at most $\Delta$. On the other hand, if $\lambda$ is a real number outside of the (closed) interval, then approximation is NP-hard. The key to establishing this picture was the interpretation of the thresholds $\lambda^*$ and $\lambda_c$ on the $\Delta$-regular tree. The “occupation ratio” of a $\Delta$-regular tree $T$ is the contribution to $Z_T(\lambda)$ from independent sets containing the root of the tree, divided by $Z_T(\lambda)$ itself. This occupation ratio converges to a limit, as the height of the tree grows, if and only if $\lambda\in [-\lambda^*,\lambda_c]$. Unsurprisingly, the case where $\lambda$ is complex is more challenging. It is known that there is an FPTAS when $\lambda$ is a complex number with norm at most $\lambda^*$ and also when $\lambda$ is in a small strip surrounding the real interval $[0,\lambda_c)$. However, neither of these results is believed to fully capture the truth about when approximation is possible. Peters and Regts identified the complex values of $\lambda$ for which the occupation ratio of the $\Delta$-regular tree converges. These values carve a cardioid-shaped region $\Lambda_\Delta$ in the complex plane, whose boundary includes the critical points $-\lambda^*$ and $\lambda_c$. Motivated by the picture in the real case, they asked whether $\Lambda_\Delta$ marks the true approximability threshold for general complex values $\lambda$. Our main result shows that for every $\lambda$ outside of $\Lambda_\Delta$, the problem of approximating $Z_G(\lambda)$ on graphs $G$ with maximum degree at most $\Delta$ is indeed NP-hard. In fact, when $\lambda$ is outside of $\Lambda_\Delta$ and is not a positive real number, we give the stronger result that approximating $Z_G(\lambda)$ is actually \#P-hard. Further, on the negative real axis, when $\lambda < - \lambda^*$, we show that it is \#P-hard to even decide whether $Z_G(\lambda)>0$, resolving in the affirmative a conjecture of Harvey, Srivastava, and Vondrák. Our proof techniques are based around tools from complex analysis---specifically the study of iterative multivariate rational maps.


中文翻译:

复平面上独立集多项式的不逼近

《 SIAM计算杂志》,预印本。
当活动$ \ lambda $是复数时,我们研究以最大度数\\ Delta $逼近图$ G $的独立集合多项式$ Z_G(\ lambda)$的值的复杂性。当$ \ lambda $是实数时,复杂度图是很好理解的,并由两个实值阈值$ \ lambda ^ * $和$ \ lambda_c $捕获,这两个阈值取决于$ \ Delta $并满足$ 0 <\ lambda ^ * <\ lambda_c $。已知如果$ \ lambda $是区间$(-\ lambda ^ *,\ lambda_c)$中的实数,则存在一个完全多项式时间近似方案(FPTAS),用于近似$ Z_G(\ lambda)$以最大度数最多$ \ Delta $绘制$ G $。另一方面,如果$ \ lambda $是(闭合)区间之外的实数,则近似值为NP-hard。建立此图的关键是解释规则树\\ Delta $上的阈值$ \ lambda ^ * $和$ \ lambda_c $。$ \ Delta $规则树$ T $的“占有率”是包含树根的独立集合对$ Z_T(\ lambda)$的贡献,除以$ Z_T(\ lambda)$本身。当且仅当$ \ lambda \ in [-\ lambda ^ *,\ lambda_c] $中时,该占用率随着树的高度增长而收敛到一个极限。毫不奇怪,$ \ lambda $复杂的情况更具挑战性。众所周知,当$ \ lambda $是一个复数且范数最多为$ \ lambda ^ * $时,并且$ \ lambda $处于围绕实区间$ [0,\ lambda_c)的小条中时,存在FPTAS $。但是,这些结果都不能完全捕捉到何时可能近似的事实。Peters and Regts确定了$ \ lambda $的复数值,$ \ Delta $-常规树的占有率收敛。这些值在复平面上刻出一个心形形状的区域$ \ Lambda_ \ Delta $,其边界包括临界点$-\ lambda ^ * $和$ \ lambda_c $。在实际情况下,受图片的激励,他们询问$ \ Lambda_ \ Delta $是否标记为一般复数值$ \ lambda $的真实近似阈值。我们的主要结果表明,对于$ \ Lambda_ \ Delta $之外的每个$ \ lambda $,在最大度数为$ \ Delta $的图形$ G $上逼近$ Z_G(\ lambda)$的问题确实是NP-hard 。实际上,当$ \ lambda $在$ \ Lambda_ \ Delta $之外并且不是正实数时,我们得出的更强的结果是,逼近$ Z_G(\ lambda)$实际上是\#P-hard。此外,在负实轴上,当$ \ lambda <-\ lambda ^ * $时,我们证明甚至很难确定$ Z_G(\ lambda)> 0 $是否很难解决哈维,斯里瓦斯塔瓦和冯德拉克的猜想。我们的证明技术基于复杂分析的工具-特别是对迭代多元有理图的研究。
更新日期:2020-09-30
down
wechat
bug