当前位置: X-MOL 学术Environ. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Belowground changes to community structure alter methane-cycling dynamics in Amazonia
Environment International ( IF 11.8 ) Pub Date : 2020-09-24 , DOI: 10.1016/j.envint.2020.106131
Kyle M. Meyer , Andrew H. Morris , Kevin Webster , Ann M. Klein , Marie E. Kroeger , Laura K. Meredith , Andreas Brændholt , Fernanda Nakamura , Andressa Venturini , Leandro Fonseca de Souza , Katherine L. Shek , Rachel Danielson , Joost van Haren , Plinio Barbosa de Camargo , Siu Mui Tsai , Fernando Dini-Andreote , José M.S. de Mauro , Jos Barlow , Erika Berenguer , Klaus Nüsslein , Scott Saleska , Jorge L.M. Rodrigues , Brendan J.M. Bohannan

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 μg CH4 m−2 d−1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 μg CH4 m−2 d−1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: −10.2 ± 35.7 μg CH4 m−2 d−1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.



中文翻译:

地下结构的变化改变了亚马逊地区的甲烷循环动力学

亚马逊雨林的砍伐速度越来越快,这主要是由于牛牧场的扩张。森林到草场的转化与土壤甲烷(CH 4)排放的增加有关。为了更好地了解这种变化的驱动因素,我们在两个亚马逊地区的原始森林,牛牧场和次生森林中测量了土壤CH 4流量,环境条件和地下微生物群落结构。我们显示,牧场土壤中排放的CH 4含量较高(平均值:3454.6±9482.3μgCH 4 m -2 d -1),与先前的报告一致,而森林土壤中的CH 4排放量平均较低(平均值:9.8±120.5)微克CH4 m -2 d -1),但通常充当CH 4汇。我们报告说,次生森林土壤倾向于消耗CH 4(平均:-10.2±35.7μgCH 4 m -2 d -1),表明牧场CH 4的排放可以逆转。我们应用一种新颖的计算方法来确定与通量无关的微生物群落属性,而与土壤化学性质无关。尽管已知这揭示了直接产生或消耗CH 4的分类单元(即分别为产甲烷菌和甲烷营养菌),但尚不清楚绝大多数已鉴定的分类单元会循环CH 4。。每种土地利用类型都有一个与CH 4通量相关的分类单元的唯一子集,这表明土地利用的变化通过微生物群落组成的变化改变了CH 4的循环。两者合计,我们表明微生物的组成对于理解观察到的CH 4动力学至关重要,并且微生物提供了环境变量无法捕获的解释力。

更新日期:2020-09-24
down
wechat
bug