当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Hydrophobicity and Porosity of the Gas Diffusion Layer on Mass Transport Losses in PEM Fuel Cells: A Simulation Study Supported by Experiments
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-09-23 , DOI: 10.1021/acs.energyfuels.0c02596
Muhammad Arif 1 , Sherman C. P. Cheung 1 , John Andrews 1
Affiliation  

Hydrophobicity and porosity of the gas diffusion layer (GDL) are key parameters in optimizing the design of proton-exchange membrane (PEM) fuel cells. Their effects on cell performance are analyzed using the ANSYS PEM fuel cell module, with simulation results compared with available experimental data. The simulations indicate that increasing the contact angle of the GDL up to 150° enhances liquid water removal and cell performance, but there is a little gain in exceeding this value. Experimental tests of a cell with a poly(tetrafluoroethylene) (PTFE)-coated GDL and high contact angle and a cell with an uncoated GDL confirmed this finding from the simulation. The modeling further indicated that increasing the porosity of the GDL from 0.4 to 0.6 boosted power output by enhancing gas transport and liquid water removal. Within the ANSYS module, a 20% variation in the exponents of pores blockage and reducing active sites did not affect cell performance significantly.

中文翻译:

气体扩散层的疏水性和孔隙率对PEM燃料电池中传质损失的影响:实验支持的模拟研究

气体扩散层(GDL)的疏水性和孔隙率是优化质子交换膜(PEM)燃料电池设计的关键参数。使用ANSYS PEM燃料电池模块分析了它们对电池性能的影响,并将仿真结果与可用的实验数据进行了比较。仿真表明,将GDL的接触角增加到150°可以增强液体水的去除和电池性能,但是超过该值几乎没有收益。通过对具有聚四氟乙烯(PTFE)涂层的GDL和高接触角的电池以及未经涂层的GDL的电池进行的实验测试证实了这一发现。该模型还表明,通过提高气体传输和液体水的去除,将GDL的孔隙率从0.4增加到0.6可以提高功率输出。在ANSYS模块中,
更新日期:2020-10-16
down
wechat
bug