当前位置: X-MOL 学术Phys. Rev. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct astrophysical tests of chiral effective field theory at supranuclear densities
Physical Review C ( IF 3.1 ) Pub Date : 
Reed Essick, Ingo Tews, Philippe Landry, Sanjay Reddy, Daniel E. Holz

Recent observations of neutron stars with gravitational waves and X-ray timing provide unprecedented access to the equation of state () of cold dense matter at densities difficult to realize in terrestrial experiments. At the same time, predictions for the equipped with reliable uncertainty estimates from chiral effective field theory () allow us to bound our theoretical ignorance. In this work, we analyze astrophysical data using a nonparametric representation of the neutron-star conditioned on to directly constrain the underlying physical properties of the compact objects without introducing modeling systematics. We discuss how the data alone constrain the at high densities when we condition on at low densities. We also demonstrate how to exploit astrophysical data to directly test the predictions of for the up to twice nuclear saturation density, in order to estimate the density at which these predictions might break down. We find that the existence of massive pulsars, gravitational waves from GW170817, and observations of J0030+0451 favor predictions for the up to nuclear saturation density over a more agnostic analysis by as much as a factor of for the quantum Monte Carlo () calculations used in this work. While predictions using are fully consistent with gravitational-wave data up to twice nuclear saturation density, observations suggest that the stiffens relative to these predictions at or slightly above nuclear saturation density. Additionally, for these calculations, we marginalize over the uncertainty in the density at which begins to break down, constraining the radius of a 1.4M neutron star to $R_{1.4} = \PSRGWRMrg$ () km and the pressure at twice nuclear saturation density to $p(2\rhonuc) = \PSRGWPtwoMrgINLINE$ () MeV/fm3 with massive pulsar and gravitational-wave (and ) data.

中文翻译:

核上手性有效场理论的直接天体测试

最近对具有引力波和X射线定时的中子星的观测提供了前所未有的途径,可以以难以在地面实验中实现的密度访问冷致密物质的状态方程。同时,根据手性有效场理论()进行的可靠的不确定性估计配备的预测,使我们可以限制理论上的无知。在这项工作中,我们使用中子星的非参数表示来分析天体数据,其条件是直接约束紧凑物体的基本物理特性,而无需引入系统的建模方法。我们讨论了当我们以低密度为条件时,仅数据如何约束高密度。我们还演示了如何利用天文学数据直接测试高达两倍核饱和密度的预测,以便估计这些预测可能分解的密度。我们发现存在大量脉冲星,来自GW170817的引力波以及对J0030 + 0451的观测都有助于通过更不可知的分析来预测至多核饱和密度,这是使用的量子Monte Carlo()计算的一个因素。在这项工作中。尽管所使用的预测与重力波数据完全一致,直至达到核饱和度密度的两倍,但观察结果表明,相对于这些预测,在或接近于核饱和度密度时,强度会增加。此外,对于这些计算,我们将密度的不确定性边缘化,该密度开始下降时,1.4中号中子星至$ R_ {1.4} = \ PSRGWRMrg $()km,两倍核饱和密度下的压力至$ p(2 \ rhonuc)= \ PSRGWPtwoMrgINLINE $()中号ËV/F3 具有大量的脉冲星和引力波(和)数据。
更新日期:2020-09-23
down
wechat
bug