当前位置: X-MOL 学术Synthesis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advances in Palladium-Catalyzed Bridging C–H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents
Synthesis ( IF 2.2 ) Pub Date : 2020-09-22 , DOI: 10.1055/s-0040-1707268
Fulin Zhang 1 , Luoting Xin 2 , Saihu Liao 1 , Xueliang Huang 2 , Yinghua Yu 2
Affiliation  


Dedicated to the 60th anniversary of the Fujian Institute of Research on the Structure of Matter

Abstract

Transition-metal-catalyzed direct inert C–H bond functionalization has attracted much attention over the past decades. However, because of the high strain energy of the suspected palladacycle generated via C–H bond palladation, direct functionalization of a C–H bond less than a three-bond distance from a catalyst center is highly challenging. In this short review, we summarize the advances on palladium-catalyzed bridging C–H activation, in which an inert proximal C–H bond palladation is promoted by the elementary step of migratory insertion of an alkene, an alkyne or a metal carbene intermediate.

1 Introduction

2 Palladium-Catalyzed Alkene Bridging C–H Activation

2.1 Intramolecular Reactions

2.2 Intermolecular Reactions

3 Palladium-Catalyzed Alkyne Bridging C–H Activation

3.1 Intermolecular Reactions

3.2 Intramolecular Reactions

4 Palladium-Catalyzed Carbene Bridging C–H Activation

5 Conclusion and Outlook



Publication History

Received: 05 June 2020

Accepted after revision: 04 August 2020

Publication Date:
22 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany



中文翻译:

使用烯烃,炔烃或重氮化合物作为桥联试剂在钯催化桥联CH活化中的最新进展


致力于福建物质结构研究所成立60周年

抽象

在过去的几十年中,过渡金属催化的直接惰性C–H键官能化引起了人们的广泛关注。但是,由于可疑的Palladacycle的高应变能是通过C–H键palpalation产生的,因此,与催化剂中心的键距小于3键的C–H键的直接官能化非常具有挑战性。在这篇简短的综述中,我们总结了钯催化桥连CH活化的研究进展,其中通过烯烃,炔烃或金属碳烯中间体的迁移性插入的基本步骤促进了惰性近端CH键的pal合。

1引言

2钯催化的烯烃桥接C–H活化

2.1分子内反应

2.2分子间反应

3钯催化的炔烃桥联CH活化

3.1分子间反应

3.2分子内反应

4钯催化的碳桥联C–H活化

5结论与展望



出版历史

收到:2020年6月5日

修订后接受:2020年8月4日

发布日期:
2020年9月22日(在线)

©2020年。Thieme。版权所有

Georg Thieme Verlag
KGRüdigerstraße14,70469斯图加特,德国

更新日期:2020-09-23
down
wechat
bug