当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting benthic macroalgal abundance in shallow coastal lagoons from geomorphology and hydrologic flow patterns
Limnology and Oceanography ( IF 3.8 ) Pub Date : 2020-09-23 , DOI: 10.1002/lno.11592
Alice F. Besterman 1 , Karen J. McGlathery 1 , Matthew A. Reidenbach 1 , Patricia L. Wiberg 1 , Michael L. Pace 1
Affiliation  

Macroalgae structure coastal ecosystems affecting metabolism, nutrient dynamics, and food webs. Spatially explicit prediction of macroalgal abundance is critical for understanding coastal ecosystems and trajectories. However, models of macroalgal distribution tend to be mechanistic and generalize poorly, or biogeographic and too coarse to use over spatial scales most appropriate to ecosystem research and management (1–100 km). Our objective was to develop spatial distribution models for benthic macroalgae in soft-sediment environments. We compared macroalgal abundance quantified as percent cover, with environmental drivers on 1 ha intertidal flats in a > 900 km lagoon system along the Atlantic Coast of Virginia, U.S.A. Physical drivers of macroalgae (e.g., depth-mediated light availability, exposure to waves) are related to bed morphology. We developed a novel topographic index (τ) to determine whether bed morphology predicts macroalgal abundance. This topographic index described variation in elevation occurring over spatial scales relevant to macroalgae, ranging from smooth to hummocky (τ = 0.01–1.07). Models tested τ along with mean elevation, fetch, and water residence time as predictors of macroalgal abundance. τ, and the interaction with water residence time, were most strongly related to macroalgal abundance. Hummocky flats accumulated less macroalgae than smoother flats, but exceptions occurred with short residence times. Model error (root mean square error) was low, varying between 8% and 18% across models. These models, based on readily measured physical features, are a useful approach for assessing macroalgal abundance in relation to shoreline hardening, species invasions, sea-level rise, and changing sedimentation affecting coastal ecosystems. Macroalgae structure coastal ecosystems through densitydependent controls on metabolism (McGlathery et al. 2001; Hardison et al. 2011), nutrient dynamics (Tyler et al. 2003; Gonzalez et al. 2013), biodiversity, and food webs (Valiela et al. 1997; Thomsen et al. 2009; Green and Fong 2016; Umanzor et al. 2019). Accurate and spatially explicit estimates of macroalgal abundance are important for understanding coastal ecosystems and predicting future trajectories. Existing approaches include mechanistic models of macroalgal dynamics developed for individual bays (tens of km) (Salomonsen et al. 1997; Thomsen et al. 2006; Nejrup and Pedersen 2010), and large-scale, low-resolution biogeographic models (thousands of km) (Martínez et al. 2012; Snickars et al. 2014; Kotta et al. 2019). Methods are less well developed for macroalgal prediction over intermediate spatial domains. Predictive models of macroalgae based on easily measured variables on the order of 1–1000 km domains are needed. Mechanistic approaches focus on statistical or mathematical prediction of macroalgae in relation to drivers that directly affect growth and abundance. Macroalgal populations are related to nutrients, light availability, and herbivory (Burkepile and Hay 2006; McGlathery et al. 2007; Thomsen and McGlathery 2007; Nejrup and Pedersen 2010). Accumulation also depends on substrate availability (Thomsen and McGlathery 2005; Kollars et al. 2016; Krueger-Hadfield et al. 2016). Macroalgae need hard substratum for spore settlement and recruitment, but some algae can grow indefinitely once they become detached from hard substratum, such as species in the Gracilariales (Kain(Jones) and Destombe 1995; Guillemin et al. 2008; Krueger-Hadfield et al. 2016). Mechanism-based predictions are complicated by interactions among drivers that lead to site-specific macroalgal responses. Physical factors interact with nutrient enrichment, leading to nonlinear macroalgal responses to nutrients (Valiela et al. 1997; Cloern 2001). For example, increasing water residence time in *Correspondence: abesterman@woodwellclimate.org Additional Supporting Information may be found in the online version of this article. Present address: Woodwell Climate Research Center, Falmouth, Massachusetts, USA Present address: Buzzards Bay Coalition, New Bedford, Massachusetts, USA

中文翻译:

从地貌和水文流动模式预测浅海沿岸泻湖底栖巨藻丰度

大型藻类结构沿海生态系统影响新陈代谢、营养动态和食物网。大型藻类丰度的空间明确预测对于了解沿海生态系统和轨迹至关重要。然而,大型藻类分布模型往往是机械的,概括性很差,或者生物地理学的模型过于粗糙,无法在最适合生态系统研究和管理(1-100 公里)的空间尺度上使用。我们的目标是开发软沉积环境中底栖大型藻类的空间分布模型。我们比较了以百分比覆盖率量化的大型藻类丰度,以及美国弗吉尼亚州大西洋沿岸 > 900 公里泻湖系统中 1 公顷潮间带上的环境驱动因素。大型藻类的物理驱动因素(例如,深度介导的光可用性,暴露于波浪)是与床层形态有关。我们开发了一种新的地形指数 (τ) 来确定床形态是否可以预测大型藻类丰度。该地形指数描述了在与大型藻类相关的空间尺度上发生的海拔变化,范围从平滑到丘状 (τ = 0.01–1.07)。模型测试了 τ 以及平均海拔、取水和水停留时间,作为大型藻类丰度的预测指标。τ 以及与水停留时间的相互作用与大型藻类丰度最密切相关。与较光滑的平台相比,高大的平台积累的大型藻类较少,但在较短的停留时间中会出现例外情况。模型误差(均方根误差)很低,不同模型的误差在 8% 到 18% 之间。这些模型基于易于测量的物理特征,是评估与海岸线硬化、物种入侵、海平面上升和影响沿海生态系统的沉积变化。大型藻类通过对代谢(McGlathery 等人,2001 年;Hardison 等人,2011 年)、营养动态(Tyler 等人,2003 年;Gonzalez 等人,2013 年)、生物多样性和食物网(Valiela 等人,1997 年)的密度依赖性控制来构建沿海生态系统; Thomsen 等人 2009 年;Green 和 Fong 2016 年;Umanzor 等人 2019 年)。对大型藻类丰度的准确和空间明确的估计对于了解沿海生态系统和预测未来轨迹非常重要。现有方法包括为单个海湾(数十公里)开发的大型藻类动力学机械模型(Salomonsen 等人,1997 年;Thomsen 等人,2006 年;Nejrup 和 Pedersen,2010 年),以及大规模、低分辨率的生物地理模型(数千公里) )(Martínez 等人,2012 年;Snickars 等人,2014 年;Kotta 等人,2019 年)。中间空间域上的大型藻类预测方法尚不完善。需要基于 1-1000 公里范围内易于测量的变量的大型藻类预测模型。机械方法侧重于与直接影响生长和丰度的驱动因素相关的大型藻类的统计或数学预测。大型藻类种群与养分、光照和食草有关(Burkepile 和 Hay 2006;McGlathery 等人 2007;Thomsen 和 McGlathery 2007;Nejrup 和 Pedersen 2010)。积累还取决于底物的可用性(Thomsen 和 McGlathery 2005;Kollars 等,2016;Krueger-Hadfield 等,2016)。大型藻类需要坚硬的基质来沉降和补充孢子,但有些藻类一旦脱离坚硬的基质,就可以无限生长,例如江蓠目中的物种(Kain(Jones) 和 Destombe 1995;Guillemin 等人,2008 年;Krueger-Hadfield 等人,2016 年)。由于驱动因素之间的相互作用导致特定地点的巨藻反应,基于机制的预测变得复杂。物理因素与养分富集相互作用,导致大型藻类对养分的非线性反应(Valiela 等人,1997 年;Cloern 2001 年)。例如,增加在 *Correspondence: abesterman@woodwellclimate.org 中的水停留时间可以在本文的在线版本中找到其他支持信息。现在地址:美国马萨诸塞州法尔茅斯伍德威尔气候研究中心 现在地址:美国马萨诸塞州新贝德福德 Buzzards Bay Coalition 由于驱动因素之间的相互作用导致特定地点的巨藻反应,基于机制的预测变得复杂。物理因素与养分富集相互作用,导致大型藻类对养分的非线性反应(Valiela 等人,1997 年;Cloern 2001 年)。例如,增加在 *Correspondence: abesterman@woodwellclimate.org 中的水停留时间可以在本文的在线版本中找到其他支持信息。现在地址:美国马萨诸塞州法尔茅斯伍德威尔气候研究中心 现在地址:美国马萨诸塞州新贝德福德 Buzzards Bay Coalition 由于驱动因素之间的相互作用导致特定地点的巨藻反应,基于机制的预测变得复杂。物理因素与养分富集相互作用,导致大型藻类对养分的非线性反应(Valiela 等人,1997 年;Cloern 2001 年)。例如,增加在 *Correspondence: abesterman@woodwellclimate.org 中的水停留时间可以在本文的在线版本中找到其他支持信息。现在地址:美国马萨诸塞州法尔茅斯伍德威尔气候研究中心 现在地址:美国马萨诸塞州新贝德福德 Buzzards Bay Coalition 增加在 * 信件中的水停留时间: abesterman@woodwellclimate.org 其他支持信息可在本文的在线版本中找到。现在地址:美国马萨诸塞州法尔茅斯伍德威尔气候研究中心 现在地址:美国马萨诸塞州新贝德福德 Buzzards Bay Coalition 增加在 * 信件中的水停留时间: abesterman@woodwellclimate.org 其他支持信息可在本文的在线版本中找到。现在地址:美国马萨诸塞州法尔茅斯伍德威尔气候研究中心 现在地址:美国马萨诸塞州新贝德福德 Buzzards Bay Coalition
更新日期:2020-09-23
down
wechat
bug