当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable Infrared Plasmon Response of Lithographic Sn‐doped Indium Oxide Nanostructures
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2020-09-22 , DOI: 10.1002/adom.202001024
Viktor Kapetanovic 1 , Isobel Claire Bicket 1 , Sorin Lazar 2 , Maureen Joel Lagos 1 , Gianluigi Andrea Botton 1, 3
Affiliation  

Transparent conductive oxides (TCOs) have strong potential for plasmonic applications. Given their easily tunable properties and low energy response, significant challenges in the controlled fabrication and precise characterization of TCOs must be better understood before this potential can be realized. Here, the mid‐ to near‐infrared plasmonic response of Sn‐doped In2O3 (ITO) nanostructures is presented, fabricated top‐down using electron beam lithography and radio‐frequency sputtering. These equilateral ITO triangles of different side lengths are imaged at high spatial and energy resolution with monochromated electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope. Applying the Richardson–Lucy (RL) deconvolution algorithm to experimental EELS spectra reveals localized surface plasmon (LSP) excitations between 150 and 550 meV and a 730 meV bulk plasmon. This very‐low‐energy response to an electron beam is compared with boundary element method simulations of nanostructures. These simulations use the dielectric functions of continuous thin films of the same materials, characterized by ellipsometry, 4‐point probe, and Hall effect tests. Additionally, upon rapid thermal annealing of ITO, blue‐shifts in LSP energy, and longer LSP lifetimes are examined as a consequence of an amorphous‐to‐polycrystalline transformation and an increase in the free carrier density.

中文翻译:

光刻锡掺杂氧化铟纳米结构的可调红外等离子体响应。

透明导电氧化物(TCO)在等离子体应用中具有强大的潜力。鉴于其易于调节的特性和较低的能量响应,在实现这一潜力之前,必须更好地理解TCO的受控制造和精确表征方面的重大挑战。在这里,Sn掺杂In 2 O 3的中红外光谱响应提出了(ITO)纳米结构,它是使用电子束光刻和射频溅射自上而下制造的。这些不同边长的等边ITO三角形是在高空间和能量分辨率下通过扫描透射电子显微镜中的单色电子能量损失谱(EELS)成像的。将Richardson-Lucy(RL)反卷积算法应用于实验EELS光谱,揭示了150至550 meV和730 meV的整体等离激元之间的局部表面等离激元(LSP)激发。将这种对电子束的极低能量响应与纳米结构的边界元方法模拟进行了比较。这些模拟使用相同材料的连续薄膜的介电功能,其特征在于椭圆偏振法,四点探针和霍尔效应测试。另外,
更新日期:2020-11-18
down
wechat
bug