当前位置: X-MOL 学术Chaos Solitons Fractals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China
Chaos, Solitons & Fractals ( IF 5.3 ) Pub Date : 2020-09-23 , DOI: 10.1016/j.chaos.2020.110286
Anwarud Din , Yongjin Li , Tahir Khan , Gul Zaman

Number of well-known contagious diseases exist around the world that mainly include HIV, Hepatitis B, influenzas etc., among these, a recently contested coronavirus (COVID-19) is a serious class of such transmissible syndromes. Abundant scientific evidence the wild animals are believed to be the primary hosts of the virus. Majority of such cases are considered to be human-to-human transmission, while a few are due to wild animals-to-human transmission and substantial burdens on healthcare system following this spread. To understand the dynamical behavior such diseases, we fitted a susceptible-infectious-quarantined model for human cases with constant proportions. We proposed a model that provide better constraints on understanding the climaxes of such unseen disastrous spread, relevant consequences, and suggesting future imperative strategies need to be adopted. The main features of the work include the positivity, boundedness, existence and uniqueness of solution of the model. The conditions were derived under which the COVID-19 may extinct or persist in the population. Sensitivity and estimation of those important parameters have been carried out that plays key role in the transmission mechanism. To optimize the spread of such disease, we present a control problem for further analysis using two control measures. The necessary conditions have been derived using the Pontryagin’s maximum principle. Parameter values have been estimated from the real data and experimental numerical simulations are presented for comparison as well as verification of theoretical results. The obtained numerical results also present the verification, accuracy, validation, and robustness of the proposed scheme.

更新日期:2020-10-02
down
wechat
bug