当前位置: X-MOL 学术Isr. J. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A structure theorem for almost low-degree functions on the slice
Israel Journal of Mathematics ( IF 0.8 ) Pub Date : 2020-09-23 , DOI: 10.1007/s11856-020-2062-4
Nathan Keller , Ohad Klein

The Fourier-Walsh expansion of a Boolean function $f \colon \{0,1\}^n \rightarrow \{0,1\}$ is its unique representation as a multilinear polynomial. The Kindler-Safra theorem (2002) asserts that if in the expansion of $f$, the total weight on coefficients beyond degree $k$ is very small, then $f$ can be approximated by a Boolean-valued function depending on at most $O(2^k)$ variables. In this paper we prove a similar theorem for Boolean functions whose domain is the `slice' ${{[n]}\choose{pn}} = \{x \in \{0,1\}^n\colon \sum_i x_i = pn\}$, where $0 \ll p \ll 1$, with respect to their unique representation as harmonic multilinear polynomials. We show that if in the representation of $f\colon {{[n]}\choose{pn}} \rightarrow \{0,1\}$, the total weight beyond degree $k$ is at most $\epsilon$, where $\epsilon = \min(p, 1-p)^{O(k)}$, then $f$ can be $O(\epsilon)$-approximated by a degree-$k$ Boolean function on the slice, which in turn depends on $O(2^{k})$ coordinates. This proves a conjecture of Filmus, Kindler, Mossel, and Wimmer (2015). Our proof relies on hypercontractivity, along with a novel kind of a shifting procedure. In addition, we show that the approximation rate in the Kindler-Safra theorem can be improved from $\epsilon + \exp(O(k)) \epsilon^{1/4}$ to $\epsilon+\epsilon^2 (2\ln(1/\epsilon))^k/k!$, which is tight in terms of the dependence on $\epsilon$ and misses at most a factor of $2^{O(k)}$ in the lower-order term.

中文翻译:

切片上几乎低度函数的结构定理

布尔函数 $f \colon \{0,1\}^n \rightarrow \{0,1\}$ 的傅立叶-沃尔什展开式是它作为多重线性多项式的唯一表示。Kindler-Safra 定理 (2002) 断言,如果在 $f$ 的展开中,超出度 $k$ 的系数的总权重非常小,则 $f$ 可以通过一个布尔值函数近似,取决于至多$O(2^k)$ 变量。在本文中,我们证明了域为“切片”的布尔函数的类似定理 ${{[n]}\choose{pn}} = \{x \in \{0,1\}^n\colon \sum_i x_i = pn\}$,其中 $0 \ll p \ll 1$,关于它们作为谐波多重线性多项式的唯一表示。我们证明如果在 $f\colon {{[n]}\choose{pn}} \rightarrow \{0,1\}$ 的表示中,超过度数 $k$ 的总权重至多为 $\epsilon$ ,其中 $\epsilon = \min(p, 1-p)^{O(k)}$,那么 $f$ 可以是 $O(\epsilon)$-通过切片上的度数-$k$ 布尔函数近似,这又取决于 $O(2^{k})$ 坐标。这证明了 Filmus、Kindle、Mossel 和 Wimmer (2015) 的猜想。我们的证明依赖于超收缩性,以及一种新型的移位程序。此外,我们证明了 Kindler-Safra 定理中的逼近率可以从 $\epsilon + \exp(O(k)) \epsilon^{1/4}$ 提高到 $\epsilon+\epsilon^2 (2 \ln(1/\epsilon))^k/k!$,这在对 $\epsilon$ 的依赖方面很严格,并且在低阶中最多错过了 $2^{O(k)}$ 的因子学期。以及一种新颖的移位程序。此外,我们证明了 Kindler-Safra 定理中的逼近率可以从 $\epsilon + \exp(O(k)) \epsilon^{1/4}$ 提高到 $\epsilon+\epsilon^2 (2 \ln(1/\epsilon))^k/k!$,这在对 $\epsilon$ 的依赖方面很严格,并且在低阶中最多错过了 $2^{O(k)}$ 的因子学期。以及一种新颖的移位程序。此外,我们证明了 Kindler-Safra 定理中的逼近率可以从 $\epsilon + \exp(O(k)) \epsilon^{1/4}$ 提高到 $\epsilon+\epsilon^2 (2 \ln(1/\epsilon))^k/k!$,这在对 $\epsilon$ 的依赖方面很严格,并且在低阶中最多错过了 $2^{O(k)}$ 的因子学期。
更新日期:2020-09-23
down
wechat
bug