当前位置: X-MOL 学术Plant Genome › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.)
The Plant Genome ( IF 4.219 ) Pub Date : 2020-03-27 , DOI: 10.1002/tpg2.20010
Jaime Jiménez‐Ruiz 1 , Jorge A. Ramírez‐Tejero 1 , Noé Fernández‐Pozo 2 , María de la O Leyva‐Pérez 1 , Haidong Yan 3 , Raúl de la Rosa 4 , Angjelina Belaj 4 , Eva Montes 5 , Mª Oliva Rodríguez‐Ariza 5 , Francisco Navarro 1 , Juan Bautista Barroso 1 , Carmen R. Beuzón 6 , Victoriano Valpuesta 7 , Aureliano Bombarely 3, 8 , Francisco Luque 1
Affiliation  

The primary domestication of olive (Olea europaea L.) in the Levant dates back to the Neolithic period, around 6,000–5,500 BC, as some archeological remains attest. Cultivated olive trees are reproduced clonally, with sexual crosses being the sporadic events that drive the development of new varieties. In order to determine the genomic changes which have occurred in a modern olive cultivar, the genome of the Picual cultivar, one of the most popular olive varieties, was sequenced. Additional 40 cultivated and 10 wild accessions were re‐sequenced to elucidate the evolution of the olive genome during the domestication process. It was found that the genome of the ‘Picual’ cultivar contains 79,667 gene models, of which 78,079 were protein‐coding genes and 1,588 were tRNA. Population analyses support two independent events in olive domestication, including an early possible genetic bottleneck. Despite genetic bottlenecks, cultivated accessions showed a high genetic diversity driven by the activation of transposable elements (TE). A high TE gene expression was observed in presently cultivated olives, which suggests a current activity of TEs in domesticated olives. Several TEs families were expanded in the last 5,000 or 6,000 years and produced insertions near genes that may have been involved in selected traits during domestication as reproduction, photosynthesis, seed development, and oil production. Therefore, a great genetic variability has been found in cultivated olive as a result of a significant activation of TEs during the domestication process.

中文翻译:

转座子激活是栽培橄榄树(Olea europaea L.)基因组进化的主要驱动力。

橄榄的主要驯化(油橄榄)黎凡特(L.)的历史可以追溯到新石器时代,大约在公元前6,000-5,500年,一些考古遗迹证明了这一点。栽培的橄榄树是无性繁殖的,性杂交是驱动新品种发展的零星事件。为了确定在现代橄榄品种中发生的基因组变化,对最流行的橄榄品种之一的Picual品种的基因组进行了测序。重新测序了另外40个栽培种和10个野生种,以阐明驯化过程中橄榄基因组的进化。发现“ Picual”品种的基因组包含79,667个基因模型,其中78,079个是蛋白质编码基因,而1,588个是tRNA。种群分析支持橄榄驯化中的两个独立事件,包括可能的早期遗传瓶颈。尽管存在基因瓶颈,但栽培种仍显示出高水平的遗传多样性,这是由转座因子(TE)的激活驱动的。在目前种植的橄榄中观察到高TE基因表达,这表明目前驯化橄榄中TE的活性。在过去的5,000或6,000年中,几个TEs家族得到扩展,并在可能驯化繁殖,光合作用,种子发育和产油的某些性状涉及的基因附近产生了插入。因此,由于驯化过程中TE的显着活化,在栽培橄榄中发现了巨大的遗传变异性。在目前种植的橄榄中观察到高TE基因表达,这表明目前驯化橄榄中TE的活性。在过去的5,000或6,000年中,几个TEs家族得到扩展,并在可能驯化繁殖,光合作用,种子发育和产油的某些性状涉及的基因附近产生了插入。因此,由于驯化过程中TE的显着活化,因此在栽培橄榄中发现了巨大的遗传变异性。在目前种植的橄榄中观察到高TE基因表达,这表明目前驯化橄榄中TE的活性。在过去的5,000或6,000年中,几个TEs家族得到扩展,并在可能驯化繁殖,光合作用,种子发育和产油的某些性状涉及的基因附近产生了插入。因此,由于驯化过程中TE的显着活化,在栽培橄榄中发现了巨大的遗传变异性。
更新日期:2020-03-27
down
wechat
bug