当前位置: X-MOL 学术Period. Math. Hung. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples
Periodica Mathematica Hungarica ( IF 0.8 ) Pub Date : 2019-07-11 , DOI: 10.1007/s10998-019-00295-0
Maohua Le , Gökhan Soydan

Let m , n be positive integers such that $$m>n$$ m > n , $$\gcd (m,n)=1$$ gcd ( m , n ) = 1 and $$m \not \equiv n \pmod {2}$$ m ≢ n ( mod 2 ) . In 1956, L. Jeśmanowicz conjectured that the equation $$(m^2 - n^2)^x + (2mn)^y = (m^2+n^2)^z$$ ( m 2 - n 2 ) x + ( 2 m n ) y = ( m 2 + n 2 ) z has only the positive integer solution $$(x,y,z) = (2,2,2)$$ ( x , y , z ) = ( 2 , 2 , 2 ) . This conjecture is still unsolved. In this paper, combining a lower bound for linear forms in two logarithms due to M. Laurent with some elementary methods, we prove that if $$mn \equiv 2 \pmod {4}$$ m n ≡ 2 ( mod 4 ) and $$m > 30.8 n$$ m > 30.8 n , then Jeśmanowicz’ conjecture is true.

中文翻译:

贝克方法在原始毕达哥拉斯三元组的 Jeśmanowicz 猜想中的应用

令 m , n 为正整数,使得 $$m>n$$ m > n , $$\gcd (m,n)=1$$ gcd ( m , n ) = 1 和 $$m \not \equiv n \pmod {2}$$ m ≢ n ( mod 2 ) 。1956 年,L. Jeśmanowicz 推测方程 $$(m^2 - n^2)^x + (2mn)^y = (m^2+n^2)^z$$ ( m 2 - n 2 ) x + ( 2 mn ) y = ( m 2 + n 2 ) z 只有正整数解 $$(x,y,z) = (2,2,2)$$ ( x , y , z ) = ( 2、2、2)。这个猜想仍然没有解决。在本文中,结合 M. Laurent 提出的两个对数线性形式的下界和一些基本方法,我们证明如果 $$mn \equiv 2 \pmod {4}$$ mn ≡ 2 ( mod 4 ) 和 $ $m > 30.8 n$$ m > 30.8 n ,则 Jeśmanowicz 的猜想成立。
更新日期:2019-07-11
down
wechat
bug