当前位置: X-MOL 学术J. Theor. Probab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Convergence of FK–Ising Percolation to $$\mathrm {SLE}(16/3, (16/3)-6)$$ SLE ( 16 / 3 , ( 16 / 3 ) - 6 )
Journal of Theoretical Probability ( IF 0.8 ) Pub Date : 2019-10-10 , DOI: 10.1007/s10959-019-00950-9
Christophe Garban , Hao Wu

We give a simplified and complete proof of the convergence of the chordal exploration process in critical FK–Ising percolation to chordal $$\mathrm {SLE}_\kappa ( \kappa -6)$$ with $$\kappa =16/3$$. Our proof follows the classical excursion construction of $$\mathrm {SLE}_\kappa (\kappa -6)$$ processes in the continuum, and we are thus led to introduce suitable cut-off stopping times in order to analyse the behaviour of the driving function of the discrete system when Dobrushin boundary condition collapses to a single point. Our proof is very different from that of Kemppainen and Smirnov (Conformal invariance of boundary touching loops of FK–Ising model. arXiv:1509.08858, 2015; Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. arXiv:1609.08527, 2016) as it only relies on the convergence to the chordal $$\mathrm {SLE}_{\kappa }$$ process in Dobrushin boundary condition and does not require the introduction of a new observable. Still, it relies crucially on several ingredients: One important emphasis of this paper is to carefully write down some properties which are often considered folklore in the literature but which are only justified so far by hand-waving arguments. The main examples of these are: We end the paper with a detailed sketch of the convergence to radial $$\mathrm {SLE}_\kappa ( \kappa -6)$$ when $$\kappa =16/3$$ as well as the derivation of Onsager’s one-arm exponent 1 / 8.

中文翻译:

关于 FK–Ising Percolation 收敛到 $$\mathrm {SLE}(16/3, (16/3)-6)$$ SLE ( 16 / 3 , ( 16 / 3 ) - 6 )

我们给出了临界 FK-Ising 渗流中弦探索过程收敛到弦 $$\mathrm {SLE}_\kappa ( \kappa -6)$$ 和 $$\kappa =16/3 的简化和完整证明$$。我们的证明遵循连续统中 $$\mathrm {SLE}_\kappa (\kappa -6)$$ 过程的经典偏移构造,因此我们引入了合适的截止停止时间以分析行为当 Dobrushin 边界条件坍缩为单点时离散系统的驱动函数。我们的证明与 Kemppainen 和 Smirnov 的证明非常不同(FK–Ising 模型的边界接触环的共形不变性。arXiv:1509.08858, 2015;随机集群模型中的共形不变性。II. 作为分支 SLE 的完全缩放限制。arXiv:1609.0852 , 2016),因为它仅依赖于 Dobrushin 边界条件下和弦 $$\mathrm {SLE}_{\kappa }$$ 过程的收敛,并且不需要引入新的可观察量。尽管如此,它仍然至关重要地依赖于几个要素:本文的一个重要重点是仔细写下一些在文献中通常被认为是民间传说的属性,但到目前为止只能通过挥手论证来证明这些属性。其中的主要例子是: 我们以详细草图结束本文,详细说明收敛到径向 $$\mathrm {SLE}_\kappa ( \kappa -6)$$ 当 $$\kappa =16/3$$ 为以及 Onsager 的单臂指数 1 / 8 的推导。本文的一个重要重点是仔细写下一些在文献中通常被认为是民间传说的属性,但到目前为止只能通过挥手论证来证明这些属性。其中的主要例子是: 我们以详细草图结束本文,详细说明收敛到径向 $$\mathrm {SLE}_\kappa ( \kappa -6)$$ 当 $$\kappa =16/3$$ 为以及 Onsager 的单臂指数 1 / 8 的推导。本文的一个重要重点是仔细写下一些在文献中通常被认为是民间传说的属性,但到目前为止只能通过挥手论证来证明这些属性。其中的主要例子是: 我们以详细草图结束本文,详细说明收敛到径向 $$\mathrm {SLE}_\kappa ( \kappa -6)$$ 当 $$\kappa =16/3$$ 为以及 Onsager 的单臂指数 1 / 8 的推导。
更新日期:2019-10-10
down
wechat
bug