当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Development of Concentric Cylinder‐Shaped Dual‐Functional Catalyst Structure for Enhanced Charge Transport in Polymer Electrolyte Fuel Cells
Advanced Theory and Simulations ( IF 3.3 ) Pub Date : 2020-09-11 , DOI: 10.1002/adts.202000096
Seungho Shin 1 , Jiawen Liu 1 , Sung‐Jae Chung 1 , Sukkee Um 1
Affiliation  

Dual‐functional catalyst bilayers of vertical concentric cylinders are proposed and numerically developed using a stochastic modeling approach to improve catalyst utilization for advanced fuel cell applications. A cylindrically bilayered catalyst structure wherein the ion transport materials are confined by concentric outer carbon shells is adopted to increase the number of interconnected electron and ion transport paths. For reliable statistical analysis, each data point is extracted from a set of 25 catalyst layer models to achieve a 95% confidence level. The nanoscale morphologies of the ionomers, including interconnected ion transport networks, surface coverage, and electrochemically active surface areas, are quantitatively evaluated. The statistical investigations reveal that the bilayered cylindrical catalyst structures provide more uniform and improved transport paths for ions and reactants when compared with established catalyst layers. Specifically, the additional ion transport channels in the core of the concentric vertical cylinder enhance catalyst utilization under insufficient ionomer conditions. Furthermore, the bilayered catalyst structures yield remarkably enlarged electrochemically active surface areas, hence facilitating more efficient electron, ion, and reactant transfers to improve catalyst utilization.

中文翻译:

增强聚合物电解质燃料电池中电荷传输的同心圆筒形双功能催化剂结构的数值研究

提出了垂直同心圆筒的双功能催化剂双层,并使用随机建模方法进行了数值开发,以提高高级燃料电池应用中的催化剂利用率。采用圆柱形双层催化剂结构,其中离子传输材料被同心的外部碳壳限制,以增加互连的电子和离子传输路径的数量。为了进行可靠的统计分析,每个数据点均从25个催化剂层模型集中提取,以达到95%的置信度。定量评估了离聚物的纳米级形貌,包括相互连接的离子传输网络,表面覆盖范围和电化学活性表面积。统计研究表明,与已建立的催化剂层相比,双层圆柱形催化剂结构为离子和反应物提供了更均匀和改善的传输路径。具体而言,在同聚物垂直圆柱体的芯中的附加离子传输通道可在离聚物条件不足的情况下提高催化剂利用率。此外,双层催化剂结构产生显着增加的电化学活性表面积,因此促进了更有效的电子,离子和反应物转移,从而提高了催化剂利用率。在离聚物条件不足的情况下,同心垂直圆柱体芯中的其他离子传输通道可提高催化剂利用率。此外,双层催化剂结构产生显着扩大的电化学活性表面积,因此有利于更有效的电子,离子和反应物转移,从而提高了催化剂的利用率。在离聚物条件不足的情况下,同心垂直圆柱体芯中的其他离子传输通道可提高催化剂利用率。此外,双层催化剂结构产生显着增加的电化学活性表面积,因此促进了更有效的电子,离子和反应物转移,从而提高了催化剂利用率。
更新日期:2020-11-06
down
wechat
bug