当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical investigation of an advanced injection cooling concept for Organic Rankine Cycles
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.enconman.2020.113342
Sebastian Eyerer , Fabian Dawo , Roberto Pili , Christopher Schifflechner , Christoph Wieland , Hartmut Spliethoff

Abstract The present experimental and numerical investigation is about an efficiency increasing and/or cost-reducing measure for Organic Rankine Cycle (ORC) systems. In such systems, a high proportion of the self-consumption of the system lies in the condensation of the working fluid due to the operation of ventilators or cooling pumps. Typically, the condenser heat exchanger is a component where the processes of desuperheating, condensation and, in some applications, also subcooling take place. Especially, the process of desuperheating requires huge heat exchanger surface areas due to the low heat transfer coefficient of the vapor phase. The proposed measure aims to reduce the share of desuperheating in the condenser through injection cooling in front of this component. On the one hand, the condenser surface area can be decreased, reducing investment costs. On the other hand, if the surface area is kept constant, the expander backpressure can be reduced due to the improved heat transfer in the condenser, leading to higher power output of the expansion machine. The present study demonstrates the benefit of this optimization measure with the aid of an experimental investigation that is complemented by a numerical analysis. Keeping the condenser surface constant, the condensation pressure can be decreased by up to 11.1%, by applying this injection cooling and together with R1233zd(E) as the working fluid, This, in turn, leads to an increase in net power output of 7.9% and consequently substantial additional revenue, especially with a large number of full load operation hours.

中文翻译:

有机朗肯循环先进喷射冷却概念的实验和数值研究

摘要 当前的实验和数值研究是关于有机朗肯循环 (ORC) 系统的一种提高效率和/或降低成本的措施。在此类系统中,系统自耗的很大一部分是由于通风机或冷却泵的运行而导致的工作流体的冷凝。通常,冷凝器热交换器是进行过热降温、冷凝以及在某些应用中过冷过程的组件。特别是,由于汽相的低传热系数,减温过程需要巨大的换热器表面积。提议的措施旨在通过在该组件前面进行喷射冷却来减少冷凝器中的过热降温份额。一方面,可以减少冷凝器表面积,降低投资成本。另一方面,如果表面积保持不变,由于冷凝器中的传热得到改善,可以降低膨胀机背压,从而提高膨胀机的功率输出。本研究借助由数值分析补充的实验研究证明了这种优化措施的好处。在保持冷凝器表面不变的情况下,通过应用这种喷射冷却并与作为工作流体的 R1233zd(E) 一起,冷凝压力可以降低高达 11.1%,这反过来又导致净功率输出增加 7.9 %,从而带来可观的额外收入,尤其是在大量满载运行小时数的情况下。由于改善了冷凝器中的传热,可以降低膨胀机背压,从而提高膨胀机的功率输出。本研究借助由数值分析补充的实验研究证明了这种优化措施的好处。在保持冷凝器表面不变的情况下,通过应用这种喷射冷却并与作为工作流体的 R1233zd(E) 一起,冷凝压力可以降低高达 11.1%,这反过来又导致净功率输出增加 7.9 %,从而带来可观的额外收入,尤其是在大量满载运行小时数的情况下。由于改善了冷凝器中的传热,可以降低膨胀机背压,从而提高膨胀机的功率输出。本研究借助由数值分析补充的实验研究证明了这种优化措施的好处。在保持冷凝器表面不变的情况下,通过应用这种喷射冷却并与作为工作流体的 R1233zd(E) 一起,冷凝压力可以降低高达 11.1%,这反过来又导致净功率输出增加 7.9 %,从而带来可观的额外收入,尤其是在大量满载运行小时数的情况下。本研究借助由数值分析补充的实验研究证明了这种优化措施的好处。在保持冷凝器表面不变的情况下,通过应用这种喷射冷却并与作为工作流体的 R1233zd(E) 一起,冷凝压力可以降低高达 11.1%,这反过来又导致净功率输出增加 7.9 %,从而带来可观的额外收入,尤其是在大量满载运行小时数的情况下。本研究借助由数值分析补充的实验研究证明了这种优化措施的好处。在保持冷凝器表面不变的情况下,通过应用这种喷射冷却并与作为工作流体的 R1233zd(E) 一起,冷凝压力可以降低高达 11.1%,这反过来又导致净功率输出增加 7.9 %,从而带来可观的额外收入,尤其是在大量满载运行小时数的情况下。
更新日期:2020-11-01
down
wechat
bug