当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable construction of core–shell CuCo2S4@polypyrrole nanocomposites as advanced anode materials for high-performance sodium ion half/full batteries
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2020-09-22 , DOI: 10.1039/d0qm00599a
Qun Li 1, 2, 3, 4 , Qingze Jiao 1, 2, 3, 4, 5 , Wei Zhou 4, 6, 7, 8, 9 , Xueting Feng 1, 2, 3, 4 , Quan Shi 1, 2, 3, 4 , Zheng Dai 1, 2, 3, 4 , Tingting Gu 1, 2, 3, 4 , Yun Zhao 1, 2, 3, 4 , Hansheng Li 1, 2, 3, 4 , Caihong Feng 1, 2, 3, 4
Affiliation  

It is important to design and fabricate novel anode materials with stable structure and high capacity for sodium ion batteries (SIBs). Herein, core–shell CuCo2S4@polypyrrole (CS-CuCo2S4@PPy) nanocomposites were prepared by a facile solvothermal reaction and subsequent in situ chemical oxidation polymerization. The CS-CuCo2S4@PPy nanocomposites show superior electrochemical performance for half SIBs with a high reversible capacity (551.2 mA h g−1 at 0.1 A g−1 after 200 cycles), excellent rate capability (370.7 mA h g−1 at 2 A g−1), and ultra-long cycling stability (324.9 mA h g−1 at 2 A g−1 after 2000 cycles). In addition, the kinetic analysis reveals that 74.6% of charge contribution is from capacitive-controlled capacity. The Na3V2(PO4)3‖CS-CuCo2S4@PPy full cell further illustrates its practical application with a high capacity of 243.6 mA h g−1 at 0.5 A g−1 after 150 cycles. The competitive electrochemical performances of CS-CuCo2S4@PPy can be attributed to the core–shell structure and the synergistic effect of CuCo2S4 and PPy. The ternary spinel CuCo2S4 can offer rich valence constituent and active sites to achieve high capacity. The PPy layer cannot only improve the electrical conductivity but also buffer the volume variation to protect CuCo2S4 spheres from pulverization during the charge/discharge processes. This work provides a facile method to prepare conductive polymer-coated transition metal sulfide nanocomposites with stable core–shell architectures, confirming their potential application in the energy storage and conversion field.

中文翻译:

可控构造核壳型CuCo2S4 @聚吡咯纳米复合材料,作为高性能钠离子半/全电池的高级阳极材料

设计和制造具有稳定结构和高容量的钠离子电池(SIB)的新型负极材料非常重要。在这里,通过容易的溶剂热反应和随后的原位化学氧化聚合反应制备了核壳型CuCo 2 S 4聚吡咯(CS-CuCo 2 S 4 PPy)纳米复合材料。CS-CuCo 2 S 4 @PPy纳米复合材料对具有高可逆容量(200个循环后,在0.1 A g -1下为551.2 mA hg -1,在200个循环后),优异的倍率能力(在2个条件下为370.7 mA hg -1)的半个SIB表现出优异的电化学性能A g -1)和超长循环稳定性(2000次循环后,在2 A g -1下为324.9 mA hg -1)。此外,动力学分析表明74.6%的电荷贡献来自电容控制的容量。中的Na 3 V 2(PO 43个‖CS-CUCO 2小号4 @PPy全电池还示出了其具有高容量243.6毫安汞柱的实际应用-1在0.5 A克-1 150次循环之后。CS-CuCo 2 S 4 @PPy的竞争电化学性能可归因于核壳结构和CuCo 2 S的协同效应4和PPy。三元尖晶石CuCo 2 S 4可以提供丰富的化合价和活性位点以实现高容量。PPy层不仅可以改善电导率,还可以缓冲体积变化,以保护CuCo 2 S 4球体在充电/放电过程中不会被粉碎。这项工作为制备具有稳定核-壳结构的导电聚合物涂覆的过渡金属硫化物纳米复合材料提供了一种简便的方法,证实了它们在能量存储和转换领域的潜在应用。
更新日期:2020-11-03
down
wechat
bug