当前位置: X-MOL 学术New J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entropy production at criticality in a nonequilibrium Potts model
New Journal of Physics ( IF 2.8 ) Pub Date : 2020-09-22 , DOI: 10.1088/1367-2630/abb5f0
Thomas Martynec , Sabine H L Klapp , Sarah A M Loos

Understanding nonequilibrium systems and the consequences of irreversibility for the system's behavior as compared to the equilibrium case, is a fundamental question in statistical physics. Here, we investigate two types of nonequilbrium phase transitions, a second-order and an infinite-order phase transition, in a prototypical q-state vector Potts model which is driven out of equilibrium by coupling the spins to heat baths at two different temperatures. We discuss the behavior of the quantities that are typically considered in the vicinity of (equilibrium) phase transitions, like the specific heat, and moreover investigate the behavior of the entropy production (EP), which directly quantifies the irreversibility of the process. For the second-order phase transition, we show that the universality class remains the same as in equilibrium. Further, the derivative of the EP rate with respect to the temperature diverges with a power-law at the critical point, but displays a non-universal critical exponent, which depends on the temperature difference, i.e., the strength of the driving. For the infinite-order transition, the derivative of the EP exhibits a maximum in the disordered phase, similar to the specific heat. However, in contrast to the specific heat, whose maximum is independent of the strength of the driving, the maximum of the derivative of the EP grows with increasing temperature difference. We also consider entropy fluctuations and find that their skewness increases with the driving strength, in both cases, in the vicinity of the second-order transition, as well as around the infinite-order transition.

中文翻译:

非平衡 Potts 模型中临界熵的产生

与平衡情况相比,理解非平衡系统以及系统行为的不可逆性的后果是统计物理学中的一个基本问题。在这里,我们在原型 q 状态向量 Potts 模型中研究了两种类型的非平衡相变,二阶和无限阶相变,该模型通过将自旋耦合到两个不同温度的热浴而脱离平衡。我们讨论了通常在(平衡)相变附近考虑的量的行为,如比热,此外还研究了熵产生 (EP) 的行为,它直接量化了过程的不可逆性。对于二阶相变,我们表明普遍性类别与平衡状态相同。此外,EP率相对于温度的导数在临界点处以幂律发散,但显示出非普遍临界指数,其取决于温差,即驱动强度。对于无限阶跃迁,EP 的导数在无序相中表现出最大值,类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。EP 率相对于温度的导数在临界点以幂律发散,但显示非通用临界指数,该指数取决于温差,即驱动强度。对于无限阶跃迁,EP 的导数在无序相中表现出最大值,类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。EP 率相对于温度的导数在临界点以幂律发散,但显示非通用临界指数,该指数取决于温差,即驱动强度。对于无限阶跃迁,EP 的导数在无序相中表现出最大值,类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。但显示非通用临界指数,该指数取决于温差,即驱动强度。对于无限阶跃迁,EP 的导数在无序相中表现出最大值,类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。但显示非通用临界指数,该指数取决于温差,即驱动强度。对于无限阶跃迁,EP 的导数在无序相中表现出最大值,类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。类似于比热。然而,与比热的最大值与驱动强度无关的比热相反,EP 的导数的最大值随着温差的增加而增加。我们还考虑了熵涨落,发现它们的偏度随着驱动强度的增加而增加,在这两种情况下,在二阶跃迁附近以及在无限阶跃迁附近。
更新日期:2020-09-22
down
wechat
bug