当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Driving-Cycle Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle
IEEE Transactions on Transportation Electrification ( IF 7.2 ) Pub Date : 2020-09-01 , DOI: 10.1109/tte.2020.3009396
Xiaodong Sun , Zhou Shi , Yingfeng Cai , Gang Lei , Youguang Guo , Jianguo Zhu

The electrical drive system is crucial to the drive performance and safety of electric vehicles (EVs). In contrast to the traditional two-wheel-driven EVs, the hub motor four-wheel-drive system can steer the vehicle by controlling the torque and speed of each wheel independently, yielding a very simple distributed drivetrain with high efficiency and reliability. This article presents a system-level design optimization method for a permanent magnet hub motor drive system for a campus patrol EV based on a practical driving cycle. An outer rotor permanent-magnet synchronous hub motor (PMSHM) and an improved model predicate current control are proposed for the drive system. Due to the lack of reducers, the direct-drive PMSHM needs to face more complex working conditions and design constraints. In the implementation, the motor design requirements are obtained through the collection of practical EV driving cycles on the campus. Based on these requirements, two models are proposed as the preliminary designs for the PMSHM. To improve their performance, an efficient multiobjective optimization method is employed to the motor considering different operational conditions. The finite-element model and thermal network model are employed to verify the performance of the optimized PMSHM. An optimal design scheme is selected by comparing the comprehensive performance of the two optimized motors. In addition, a duty-cycle model predictive current control is adopted to drive the motor. Finally, a prototype is developed and tested, and the experimental results are presented.

中文翻译:

四轮驱动电动汽车永磁轮毂电机驱动系统面向驱动循环的优化设计

电力驱动系统对电动汽车 (EV) 的驱动性能和安全性至关重要。与传统的两轮驱动电动汽车相比,轮毂电机四轮驱动系统可以通过独立控制每个车轮的扭矩和速度来实现车辆转向,从而产生非常简单、高效、可靠的分布式传动系统。本文提出了一种基于实际行驶工况的校园巡逻电动车永磁轮毂电机驱动系统的系统级设计优化方法。针对驱动系统提出了外转子永磁同步轮毂电机(PMSM)和改进的模型谓词电流控制。由于缺少减速机,直驱式永磁同步电机需要面对更复杂的工况和设计约束。在实施中,电机设计要求是通过收集校园内实际的电动汽车驾驶循环获得的。基于这些要求,提出了两种模型作为 PMSHM 的初步设计。为了提高它们的性能,考虑到不同的运行条件,对电机采用了一种有效的多目标优化方法。有限元模型和热网络模型被用来验证优化后的永磁同步电机的性能。通过比较两种优化电机的综合性能,选择最优设计方案。此外,采用占空比模型预测电流控制来驱动电机。最后,开发并测试了原型,并给出了实验结果。基于这些要求,提出了两种模型作为 PMSHM 的初步设计。为了提高它们的性能,考虑到不同的运行条件,对电机采用了一种有效的多目标优化方法。有限元模型和热网络模型被用来验证优化后的永磁同步电机的性能。通过比较两种优化电机的综合性能,选择出最佳设计方案。此外,采用占空比模型预测电流控制来驱动电机。最后,开发并测试了原型,并给出了实验结果。基于这些要求,提出了两种模型作为 PMSHM 的初步设计。为了提高它们的性能,考虑到不同的运行条件,对电机采用了一种有效的多目标优化方法。有限元模型和热网络模型被用来验证优化后的永磁同步电机的性能。通过比较两种优化电机的综合性能,选择最优设计方案。此外,采用占空比模型预测电流控制来驱动电机。最后,开发并测试了原型,并给出了实验结果。考虑到不同的运行条件,对电机采用了一种高效的多目标优化方法。有限元模型和热网络模型被用来验证优化后的永磁同步电机的性能。通过比较两种优化电机的综合性能,选择最优设计方案。此外,采用占空比模型预测电流控制来驱动电机。最后,开发并测试了原型,并给出了实验结果。考虑到不同的运行条件,对电机采用了一种高效的多目标优化方法。有限元模型和热网络模型被用来验证优化后的永磁同步电机的性能。通过比较两种优化电机的综合性能,选择最优设计方案。此外,采用占空比模型预测电流控制来驱动电机。最后,开发并测试了原型,并给出了实验结果。
更新日期:2020-09-01
down
wechat
bug