当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanostructured Alkali-Metal Vapor Cells
Physical Review Applied ( IF 4.6 ) Pub Date : 2020-09-21 , DOI: 10.1103/physrevapplied.14.034054
T.F. Cutler , W.J. Hamlyn , J. Renger , K.A. Whittaker , D. Pizzey , I.G. Hughes , V. Sandoghdar , C.S. Adams

Atom-light interactions in micro- and nanoscale systems hold great promise for alternative technologies based on integrated emitters and optical modes. We present the design architecture, construction method, and characterization of an all-glass alkali-metal vapor cell with nanometer-scale internal structure. Our cell has a glue-free design that allows versatile optical access, in particular with high numerical aperture optics, and incorporates a compact integrated heating system in the form of an external deposited indium tin oxide layer. By performing spectroscopy in different illumination and detection schemes, we investigate atomic densities and velocity distributions in various nanoscopic landscapes. We apply a two-photon excitation scheme to atoms confined in one dimension within our cells, achieving resonance line widths more than an order of magnitude smaller than the Doppler width. We also demonstrate sub-Doppler line widths for atoms confined in two dimensions to micron-sized channels. Furthermore, we illustrate control over vapor density within our cells through nanoscale confinement alone, which could offer a scalable route towards room-temperature devices with single atoms within an interaction volume. Our design offers a robust platform for miniaturized devices that could easily be combined with integrated photonic circuits.

中文翻译:

纳米碱金属蒸气细胞

微米和纳米级系统中的原子-光相互作用对于基于集成发射器和光学模式的替代技术具有广阔的前景。我们介绍了具有纳米级内部结构的全玻璃碱金属蒸气电池的设计架构,构造方法和表征。我们的电池采用无胶设计,可实现通用的光学访问,尤其是具有高数值孔径的光学器件,并采用外部沉积的铟锡氧化物层形式的紧凑型集成加热系统。通过在不同的照明和检测方案中执行光谱,我们研究了各种纳米景观中的原子密度和速度分布。我们对细胞内一维范围内的原子应用了双光子激发方案,获得的共振线宽度比多普勒宽度小一个数量级。我们还演示了二维限制在微米级通道中的原子的亚多普勒线宽。此外,我们仅通过纳米级限制说明了对细胞内蒸气密度的控制,这可以为在相互作用体积内具有单个原子的室温设备提供一条可扩展的途径。我们的设计为微型设备提供了一个强大的平台,可以轻松地将其与集成光子电路相结合。这可以为在相互作用体积内具有单个原子的室温设备提供一条可扩展的途径。我们的设计为微型设备提供了强大的平台,可以轻松地将其与集成光子电路结合使用。这可以为在相互作用体积内具有单个原子的室温设备提供一条可扩展的途径。我们的设计为微型设备提供了一个强大的平台,可以轻松地将其与集成光子电路相结合。
更新日期:2020-09-22
down
wechat
bug