当前位置: X-MOL 学术Quaest. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Zariski topology on integrally closed maximal subrings of a commutative ring
Quaestiones Mathematicae ( IF 0.6 ) Pub Date : 2020-09-22 , DOI: 10.2989/16073606.2020.1816588
Alborz Azarang 1
Affiliation  

Abstract

Let R be a commutative ring and Xi.c(R) denotes the set of all integrally closed maximal subrings of R. It is shown that if R is a non-field G-domain, then there exists S ∈ Xi.c (R) with (S : R) = 0. If K is an algebraically closed field which is not absolutely algebraic, then we prove that the polynomial ring K[X] has an integrally closed maximal subring with zero conductor too; a characterization of integrally closed maximal subrings of K[X] with (non-)zero conductor is given. It is observed that, an integrally closed maximal subrings S of K[X] is a principal ideal domain (PID) if and only if M = Sq for some q1 ∈ K \ S, where M is the crucial maximal idea of the extension S ⊆ K[X]. We show that if f (X, Y) is an irreducible polynomial in K[X, Y ], then there exists an integrally closed maximal subring S of K[X, Y ] with (S : K[X, Y ]) = f (X, Y) K[X, Y ]. It is proved that, if R is a ring and , where I is an ideal of R, then is an ideal of R} is a topology for closed sets on X (R). We show that this space has similar properties such as those one in the Zariski spaces on Spec(R) or K(the affine space). In particular, if K is a field which is not algebraic over its prime subring, then Xi.c(K[X1,…, Xn]) is irreducible and if in addition K is algebraically closed, then we prove a similar full form of the Hilbert Nullstellensatz for K[X1,…, Xn]. Moreover, if R is a non-field G-domain or R = K[X], where K is an algebraically closed field which is not algebraic over its prime subring, then ∅ ≠ gen(Xi.c (R)) = {S ∈ Xi.c (R) | (S : R) = 0}. We determine exactly when the space Xi.c(R) is a Ti-space for i = 0, 1, 2. In particular, we show that if Xi.c is T1-space then R is a Hilbert ring and |Xi.c (R)| ≤ 2|Max(R)|. Finally, we determine when the space Xi.c is connected.



中文翻译:

交换环的全闭最大子环上的 Zariski 拓扑

摘要

R为交换环,X i.c ( R ) 表示R的所有积分闭最大子环的集合。证明如果R是非域G域,则存在S ∈ X i.c ( R ) 且 ( S : R ) = 0。如果K是非绝对代数的代数闭域,则证明多项式环K [ X ] 也有一个具有零导体的整体闭合最大子环;K的整体闭合最大子环的表征[给出了具有(非)零导体的X ]。可以观察到,K [ X ] 的一个整体闭合的极大子环S是一个主理想域 (PID) 当且仅当M = Sq对于一些q 1 ∈ K \ S,其中M是扩展S ⊆ K [ X ]。我们证明如果f ( X, Y ) 是K [ X, Y ] 中的一个不可约多项式,则存在K [ X, Y ] 与 ( S : K [ X, Y ]) = f ( X, Y ) K [ X, Y ]。证明了,如果R是一个环并且,其中IR的理想,则R的理想} 是X ( R ) 上的闭集拓扑。我们证明了这个空间具有类似的属性,例如Spec ( R ) 或K (affine 空间)上的 Zariski 空间中的那些。特别是,如果K是一个在其素数子环上不是代数的域,则X i.c ( K [ X 1 ,…, X n ]) 是不可约的,如果另外K是代数闭的,那么我们证明了 Hilbert Nullstellensatz 的类似完整形式K [ X 1 ,…, X n ]。此外,如果R是非域G域或R = K [ X ],其中K是代数闭域,在其素数子环上不是代数域,则 ∅ ≠ gen(X i.c (R )) = { S ∈ X i.c ( R ) | ( S : R )=0}。我们准确地确定空间X i.c ( R ) 何时是i = 0 , 1 , 2 的Ti空间。特别是,我们证明如果X i.cT 1-空间,则R是希尔伯特环和|X i.c ( R )| ≤ 2 | 最大R)| . 最后,我们确定当空间X i.c已连接。

更新日期:2020-09-22
down
wechat
bug