当前位置: X-MOL 学术Tectonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithospheric Density Structure and Effective Elastic Thickness Beneath Himalaya and Tibetan Plateau: Inference From the Integrated Analysis of Gravity, Geoid, and Topographic Data Incorporating Seismic Constraints
Tectonics ( IF 3.3 ) Pub Date : 2020-09-22 , DOI: 10.1029/2020tc006219
M. Ravikumar 1 , B. Singh 1, 2 , V. Pavan Kumar 1 , A. V. Satyakumar 1 , D. S. Ramesh 2 , V. M. Tiwari 1
Affiliation  

Investigation of deep crustal and lithospheric structures is essential to understand the nature of geodynamical processes beneath the Himalaya and Tibetan plateau of the India‐Eurasia collision zone. Our density cross sections across the Himalaya‐Eurasia collision zone using integrated 2‐D modeling of gravity, topography, and geoid data incorporating constraints from seismic information supports the above contention. Analysis of gravity, geoid, and elevation data over the interior of the Tibetan plateau predicts complete isostatic compensation, whereas margins of the plateau, having large topographic gradients, show lack of isostatic compensation as the Airy Moho differs from flexural Moho and seismic Moho beneath the Himalaya. Our 2‐D modeled lithospheric cross sections show thick crust (~75 km) and thick lithosphere (~240 km) beneath the Himalayas and southern Tibetan plateau and relatively thin crust (~60 km) and thin lithosphere (~140 km) beneath the northern Tibetan plateau. Therefore, depth of lithosphere‐asthenosphere boundary (LAB) mimics the Moho relief. Thinner crust and thin lithosphere under northern Tibetan plateau suggest the importance of the mantle isostasy where the temperature is anomalously high. This corroborates with the presence of recent potassic volcanism, inefficient Sn propagation, east and southeast oriented global positioning system displacements, and large shear wave splitting anisotropy (>2 s). Excellent correlation between effective elastic thickness and lithospheric thickness predicts hot and deformable lithosphere in the northern Tibet and underthrusting of cold Indian mantle beneath the Himalayas.

中文翻译:

喜马拉雅山和青藏高原下的岩石圈密度结构和有效弹性厚度:结合重力约束的重力,大地水准面和地形数据的综合分析推论

深层地壳和岩石圈结构的调查对于了解印度-欧亚大陆碰撞带的喜马拉雅山和青藏高原以下的地球动力学过程的本质至关重要。我们使用结合了地震信息约束的重力,地形和大地水准面数据的集成二维建模,在喜马拉雅-欧亚大陆碰撞带上的密度剖面,支持了上述观点。对青藏高原内部的重力,大地水准面和高程数据的分析预测出完全的等静压补偿,而具有较大地形梯度的高原边缘显示缺乏等静压补偿,因为艾里莫霍面不同于弯曲莫霍面和地震莫霍面下的莫霍面。喜马拉雅山。我们的二维建模岩石圈剖面显示,喜马拉雅山和青藏高原南部的地壳厚(〜75 km)和岩石圈厚(〜240 km),而地幔下方的地壳相对薄(〜60 km)和岩石圈薄(〜140 km)。青藏高原北部。因此,岩石圈-软流圈边界(LAB)的深度模拟了莫霍面浮雕。青藏高原北部较薄的地壳和较薄的岩石圈表明,温度异常高的地幔等静层的重要性。这与最近的钾质火山活动,低效的锡传播,东向和东南向的全球定位系统位移以及大的剪切波分裂各向异性(> 2 s)有关。
更新日期:2020-10-02
down
wechat
bug