当前位置: X-MOL 学术Macromol. Rapid Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Evolving Landscape of Polymer Science and Engineering in Australia
Macromolecular Rapid Communications ( IF 4.6 ) Pub Date : 2020-09-22 , DOI: 10.1002/marc.202000414
Kristian Kempe 1, 2 , Kristofer J Thurecht 3
Affiliation  

Polymer science in Australia has always been a strength within the physical and chemical sciences. The geographical isolation of Australia has also dictated to a large extent, the necessity to engage the broader international polymer communities to remain at the forefront of the field, while producing impactful science and outcomes. The Australasian Polymer Symposium (in 2019 we celebrated the 37th APS) has traditionally been the forum from which scientific advances in polymer science are disseminated to the field, and how these scientific successes are celebrated within the global community. This special issue highlights the multinational collaborations that epitomize the fundamental and applied polymer science that forms the backbone of the research field in Australia.

While our synthetic culture has been dictated by advances in controlled radical polymerisations over the previous few decades, the breadth of science and applications within the polymer field is ever increasing. As evidenced in this special issue, the field now encompasses application areas from energy storage and generation, to lithographic applications including data storage, through to modern applications in medicine. These application areas are all underpinned by fundamental polymer science that dictates and controls the material properties.

While our field now has very much been identified as playing a key role in emerging technological areas in nanotechnology and biotechnology, there is also renewed focus on dealing with the legacy of the unprecedented demand for commodity plastics over the previous 50 years, and the subsequent impact on the environment of relentless production of non‐degradable plastic waste. As with many other countries, Australia has a keen interest understanding, dealing with, and preventing future environmental issues that may arise from plastics use. This discussion is nicely encapsulated in an essay by Wurm, Barner and colleagues within this special issue, where the state‐of‐play in dealing with this modern‐day challenge is discussed in terms of policy and practice in Australia and Germany (2000351).

Light‐driven photoreactions now form a key focus area in development of precision materials using polymers. Within this special issue, recent advances in this area are reviewed by Boase (2000305), and specific examples are reported by Zhang et al. (2000166) who report monoaminoanthraquinone‐based photoinitiaters for free radical photopolymerizations, as well as by Qiao et al. as a means of releasing carbon monoxide from photodegradable micelles (2000323). Another key focus area at the meeting was the discussion of ways to better deal with manufacturing of materials with ever‐increasing complexity. As an example, Qiao and coworkers describe continuous flow processes for developing new and rapid production of polypeptides for various applications in a communication article (2000071), while Travas‐Sejdic and team developed a cross‐flow purification system for wine clarification (2000303).

The power of polymers for the fabrication of functional materials is further highlighted in contributions by Delaittre et al. (2000320) who study new thioacetate‐based initiators for CROP of 2‐oxazolines; Cameron et al. (2000036) who prepare linear coordination polymers from bis‐catechol RAFT polymers; and Ravoo et al. (2000049) who study the self‐assembly of adamantane‐terminated polypeptides via host‐guest complexations. Pester et al. provide insights into new processes for functionalizing surfaces with polymer brushes (2000177), and Zhang and coworkers discuss the presence of defined microenvironments within thermoresponsive dendronized polymers (2000325). The morphological transition of so‐called “platonic micelles” is also discussed by Sakurai et al. (2000227). Lauko et al. (2000304) provide structural insights into the mechanism of heat‐set gel formation of polyisocyanopeptide polymers, while Blinco et al. (2000183) take a closer look at the possibilities to tune the properties of polymethacrylimides. Minami et al. (2000141) present graphene oxide nanocomposites stabilized by poly(ionic liquids).

Another major application driver of new polymer science in Australia is in understanding and improving human health. The current role of polymers in nanomedicine was described in a perspective piece by Fletcher et al. (2000319), and a nice review of current processes to engineer cells with polymers for medical applications was presented by Arno (2000302). This special issue itself describes the application of polymers and their important roles across the broad medical field, including in drug delivery, for example, see the communications by de Geest et al. (2000034) and Stenzel et al. (2000208) as well as the contribution by Groeschel et al. (2000301) and the review by Such et al. (2000298) on multicompartment micelles, antimicrobial materials described by O'Reilly and team (2000190), hydrogels for 3D cell cultures reported by De Laporte (2000191), and sensors [Chandrawati et al. (2000172)].

The polymer community in Australia is diverse and internationally inclusive. This special issue captures some of the exciting work that was discussed from local and international groups, and provides a snapshot of the future focus for the field.



中文翻译:

澳大利亚聚合物科学与工程学的发展格局

澳大利亚的聚合物科学一直是物理和化学科学领域的强项。澳大利亚在地理上的孤立性在很大程度上也决定了有必要让更广泛的国际聚合物界保持在该领域的最前沿,同时产生有意义的科学和成果。从传统上讲,澳大利亚聚合物研讨会(2019年,我们庆祝了37APS)是将聚合物科学进展传播到该领域以及在国际社会中如何庆祝这些科学成功的论坛。本期专刊着重介绍了跨国合作,这些合作概括了构成澳大利亚研究领域骨干的基础和应用聚合物科学。

尽管过去几十年来受控自由基聚合的发展决定了我们的合成文化,但聚合物领域内的科学和应用范围不断扩大。正如本期特刊所证明的那样,该领域现在涵盖了从能量存储和发电到光刻应用(包括数据存储)再到现代医学应用领域。这些应用领域均以基础聚合物科学为基础,该科学决定并控制材料性能。

虽然现在我们的领域已被广泛确认为在纳米技术和生物技术的新兴技术领域中发挥着关键作用,但人们也开始重新关注应对过去50年来对商品塑料空前需求的遗留问题以及随后的影响无情地生产不可降解塑料废物的环境。与许多其他国家一样,澳大利亚对塑料的使用产生了浓厚的兴趣,对它们的理解,处理以及防止了未来的环境问题。这个讨论很好地封装在Wurm,Barner及其同事在此特刊中的一篇文章中,其中在澳大利亚和德国(2000351)的政策和实践中讨论了应对这一现代挑战的现状。

现在,光驱动的光反应已成为使用聚合物开发精密材料的重点领域。在本期特刊中,Boase(2000305)对该领域的最新进展进行了综述,而Zhang等人则报道了一些具体实例。(2000166)报告了基于单氨基蒽醌的光引发剂,用于自由基光聚合,以及Qiao等人的论文。作为从可光降解的胶束释放一氧化碳的一种手段(2000323)。会议的另一个重点是讨论如何更好地处理日益复杂的材料制造方法。例如,乔(Qiao)及其同事在通讯文章(2000071)中描述了用于开发新型快速生产多肽以用于各种应用的连续流过程,

Delaittre等人的论文进一步强调了聚合物在功能材料制造中的作用。(2000320)研究了新的基于硫代乙酸酯的引发剂,用于2-恶唑啉的CROP;Cameron等。(2000036)由双邻苯二酚RAFT聚合物制备线性配位聚合物;和Ravoo等。(2000049)研究了通过客体-客体复合物的金刚烷末端多肽的自组装。佩斯特等。提供了使用聚合物刷功能化表面的新方法的见解(2000177),Zhang和同事讨论了热响应性树突化聚合物中定义的微环境的存在(2000325)。Sakurai等人也讨论了所谓的“柏油胶束”的形态转变。(2000227)。Lauko等。(Blinco等人(2000304)对聚异氰基肽聚合物的热定型凝胶形成机理提供了结构上的见解)。(2000183)仔细研究了调节聚甲基丙烯酰亚胺的性能的可能性。Minami等。(2000141)提出了通过聚(离子液体)稳定的氧化石墨烯纳米复合材料。

在澳大利亚,新聚合物科学的另一个主要应用推动力是理解和改善人类健康。Fletcher等人在一篇观点文章中描述了聚合物在纳米医学中的当前作用。(2000319),Arno(2000302)提出了对目前使用高分子聚合物工程化细胞的方法的很好的综述。该特刊本身描述了聚合物在整个医学领域的应用及其重要作用,包括在药物输送中的作用,例如,请参阅de Geest等人的来文。(2000034)和Stenzel等。(2000208)以及Groeschel等人的贡献。(2000301)和Such等人的评论。(2000298)关于多隔室胶束,O'Reilly及其小组(2000190)描述的抗菌材料,De Laporte(2000191)报道了用于3D细胞培养的水凝胶和传感器[Chandrawati等。(2000172)]。

澳大利亚的聚合物界是多种多样的,具有国际包容性。本期特刊记录了本地和国际组织讨论的一些激动人心的工作,并概述了该领域的未来重点。

更新日期:2020-09-22
down
wechat
bug