当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step hydrothermal synthesis of Ni3S2/MoS2 nanocomposites on rGO: Structural evolution and supercapacitor performance
Surface & Coatings Technology ( IF 5.4 ) Pub Date : 2020-09-22 , DOI: 10.1016/j.surfcoat.2020.126442
Wenqing Wei , Bingqiang Liu , Yiqiang Gan , Haijian Ma , Dongren Chen , Jiqiu Qi , Shengli Li

In the present paper, rGO was coated on Ni foams (NFs) by simple physical deposition and subsequent thermal reduction method. Then, Ni3S2/MoS2 composites with different morphologies on the surface of rGO were fabricated via one-step hydrothermal route with different reaction time (18 h, 24 h, 30 h, 36 h and 42 h). It's found that the reaction time significantly affects the morphologies and electrochemical performance of the composites. As reaction time is 18 h and 24 h, Ni3S2/MoS2 composites show two-dimensional nanosheet-like shape with 3D network structure. As reaction time increases continuously, one-dimensional nanorod with residual nanosheet at the root is obtained. After 36 h, hollow Ni3S2@MoS2 hybrid nanofibers with hierarchical core-shell structure were fabricated. RGO/Ni3S2/MoS2 composite with core-shell structure (prepared at 150 °C for 36 h) exhibited good electrochemical properties with specific capacitance of 6451 mF∙cm−2 at 40 mA∙cm−2, and a remarkable cycling performance of 87.2% capacitance retention after 5000 cycles at 110 mA cm−2. An aqueous asymmetrical supercapacitor was assembled using rGO/Ni3S2/MoS2 composite obtained at 150 °C for 36 h and rGO as positive and negative electrode materials. The assembled device displays very good cycling stability of 133% retention of initial specific capacitance and high energy density of 32.6 W h kg−1 at a power density of 399.8 W kg−1. These results sufficiently prove the practical application of rGO/Ni3S2/MoS2 composites in supercapacitor electrode materials.



中文翻译:

在rGO上一步一步水热合成Ni 3 S 2 / MoS 2纳米复合材料:结构演变和超级电容器性能

在本文中,通过简单的物理沉积和随后的热还原方法将rGO涂覆在镍泡沫(NFs)上。然后,通过一步水热法在不同的反应时间(18 h,24 h,30 h,36 h和42 h)下制备rGO表面不同形貌的Ni 3 S 2 / MoS 2复合材料。发现反应时间显着影响复合材料的形貌和电化学性能。当反应时间为18 h和24 h时,Ni 3 S 2 / MoS 2复合材料显示具有3D网络结构的二维纳米片状形状。随着反应时间的不断增加,获得了一维纳米棒,其根部残留有纳米片。36 h后,制备了具有分层核壳结构的空心Ni 3 S 2 @MoS 2杂化纳米纤维。RGO /镍3小号2 / MOS 2复合材料的核-壳结构(在150℃下制备的36小时)显示出与6451μF的∙厘米的比电容良好的电化学性能-2在40mA∙厘米-2,和显着的110 mA cm -2的5000个循环后的87.2%电容保持率的循环性能。使用在150°C下获得的rGO / Ni 3 S 2 / MoS 2复合材料在36 h下将rGO / Ni 3 S 2 / MoS 2复合材料和rGO作为正极和负极材料组装而成。组装后的器件在399.8 W kg -1的功率密度下显示出非常好的循环稳定性,可保持133%的初始比电容,并具有32.6 W h kg -1的高能量密度。这些结果充分证明了rGO / Ni 3 S 2 / MoS 2复合材料在超级电容器电极材料中的实际应用。

更新日期:2020-09-22
down
wechat
bug