当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An insight into the role of silicon on retaliation to osmotic stress in finger millet (Eleusine coracana (L.) Gaertn)
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2020-09-22 , DOI: 10.1016/j.jhazmat.2020.124078
Pankaj S. Mundada , Vitthal T. Barvkar , Suraj D. Umdale , S. Anil Kumar , Tukaram D. Nikam , Mahendra L. Ahire

Finger millet, a vital nutritional cereal crop provides food security. It is a well-established fact that silicon (Si) supplementation to plants alleviates both biotic and abiotic stresses. However, precise molecular targets of Si remain elusive. The present study attempts to understand the alterations in the metabolic pathways after Si amendment under osmotic stress. The analysis of transcriptome and metabolome of finger millet seedlings treated with distilled water (DW) as control, Si (10 ppm), PEG (15%), and PEG (15%) + Si (10 ppm) suggest the molecular alterations mediated by Si for ameliorating the osmotic stress. Under osmotic stress, uptake of Si has increased mediating the diversion of enhanced pool of acetyl CoA to lipid biosynthesis and down-regulation of TCA catabolism. The membrane lipid damage reduced significantly by Si under osmotic stress. Significant decrease in linolenic acid and increase of jasmonic acid (JA) in PEG+Si treatment suggest the JA mediated regulation of osmotic stress. The relative expression of transcripts corroborated with the corresponding metabolites abundance levels indicating the activity of genes in assuaging the osmotic stress. This work substantiates the role of Si in osmotic stress tolerance by reprogramming of fatty acids biosynthesis in finger millet.



中文翻译:

硅在小米对渗透压的报复中的作用的洞察力(伊路西拉·科拉卡纳(L.)·盖恩特

手指小米是至关重要的营养谷物作物,可提供粮食安全。众所周知,向植物补充硅(Si)可以缓解生物和非生物胁迫。但是,Si的精确分子靶标仍然难以捉摸。本研究试图了解渗透压下Si修饰后代谢途径的变化。用蒸馏水(DW)作为对照,Si(10 ppm),PEG(15%)和PEG(15%)+ Si(10 ppm)处理的小米幼苗的转录组和代谢组分析表明,介导的分子变化Si用于减轻渗透压。在渗透胁迫下,硅的吸收增加了介导增加的乙酰辅酶A池转移到脂质生物合成和下调TCA分解代谢的作用。在渗透胁迫下,Si引起的膜脂损伤明显减少。PEG + Si处理中亚麻酸的显着减少和茉莉酸(JA)的增加表明JA介导的渗透压调节。转录物的相对表达与相应的代谢物丰度水平相符,表明基因在缓解渗透胁迫中的活性。这项工作通过重新编程手指粟中的脂肪酸生物合成,证实了硅在渗透胁迫耐受性中的作用。

更新日期:2020-09-22
down
wechat
bug