当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On computing the analytic-signal backbone of the unforced harmonic oscillator
Journal of Computational and Applied Mathematics ( IF 2.1 ) Pub Date : 2020-09-22 , DOI: 10.1016/j.cam.2020.113206
Joseph P. Wright , Peng F. Tang , Jin-Song Pei , François Gay-Balmaz , Joseph P. Havlicek

Backbone curves are usually obtained by analyzing nonlinear oscillators (e.g., the Duffing equation) whereas the backbones of linear oscillators are incidental by-products of such studies. Nevertheless, we focus on the harmonic oscillator, a linear, homogeneous constant-coefficient second-order ordinary differential equation. The backbone of the sinusoidally forced harmonic oscillator is well known, but the backbone of the unforced harmonic oscillator seems to have received essentially no attention. Since the 1980s, various computerized methods of backbone extraction have been under development, one of which is based on analytic-signal theory, a subfield of digital signal processing that involves Hilbert transform computations. By focusing on linear-theory backbones, a prerequisite to nonlinear analysis, we aim to pinpoint some of the theoretical and computational issues that arise when dealing with analytic-signal backbones. This paper examines the Mirror Periodic Method (MPM) as a practical way to reduce end effects in Hilbert transform computations and approximate analytic-signal backbones of unforced harmonic oscillators with light damping (less than 10 percent of critical). Using numerical examples, we demonstrate that MPM works well with both displacement and acceleration data, even for short signals, meaning just one or two damped cycles of oscillation. We then apply MPM techniques to accelerometer data that were recorded as part of earthquake-engineering teaching demonstrations involving a small-scale laboratory model of a linear single-degree-of-freedom system.



中文翻译:

计算无力谐振子的解析信号主干

骨干曲线通常是通过分析非线性振荡器(例如Duffing方程)获得的,而线性振荡器的主干是此类研究的附带产物。尽管如此,我们还是专注于谐波振荡器,这是一个线性的,齐次的常系数二阶常微分方程。正弦强制谐振器的主干是众所周知的,但是非强制谐振器的主干似乎基本上没有受到关注。自1980年代以来,各种骨干提取的计算机化方法都在开发中,其中一种是基于解析信号理论的,后者是涉及希尔伯特变换计算的数字信号处理的子领域。通过关注线性理论的主干,非线性分析的先决条件,我们旨在查明在处理分析信号主干时出现的一些理论和计算问题。本文研究了镜像周期法(MPM),它是一种减少Hilbert变换计算中的端效应的实用方法,并通过光阻尼(小于临界值的10%)来近似非强制谐波振荡器的解析信号主干。通过数值示例,我们证明了MPM既适用于位移数据又适用于加速度数据,即使对于短信号也是如此,这意味着仅一个或两个阻尼振荡周期。然后,我们将MPM技术应用于加速度计数据,这些数据作为地震工程教学演示的一部分进行记录,涉及线性单自由度系统的小型实验室模型。本文研究了镜像周期法(MPM),它是一种减少Hilbert变换计算中端效应的实用方法,并且可以通过光阻尼(小于临界值的10%)来近似非强制谐波振荡器的解析信号主干。通过数值示例,我们证明了MPM既适用于位移数据又适用于加速度数据,即使对于短信号也是如此,这意味着仅一个或两个阻尼振荡周期。然后,我们将MPM技术应用于加速度计数据,这些数据作为地震工程教学演示的一部分进行记录,涉及线性单自由度系统的小型实验室模型。本文研究了镜像周期法(MPM),它是一种减少Hilbert变换计算中端效应的实用方法,并且可以通过光阻尼(小于临界值的10%)来近似非强制谐波振荡器的解析信号主干。通过数值示例,我们证明了MPM既适用于位移数据又适用于加速度数据,即使对于短信号也是如此,这意味着仅一个或两个阻尼振荡周期。然后,我们将MPM技术应用于加速度计数据,这些数据作为地震工程教学演示的一部分进行记录,涉及线性单自由度系统的小型实验室模型。

更新日期:2020-10-04
down
wechat
bug