当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of the Sn(Fe)–C bonds content in SnFe2O4@reduced graphene oxide composites on the electrochemical behavior of lithium-ion batteries
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157297
Yan-Hui Sun , Man-Xia Huang , Dong-Cai Guan , Guang-Li Zhang , Jing-Lan Wei , Jun-Min Nan , Fen-Yun Yi

Abstract Inverse spinel SnFe2O4 as an anode material for lithium-ion batteries (LIBs) suffers from poor cycling stability due to its lower conductivity and excess volume change during charge/discharge process. In order to overcome the obstacles, a series of SnFe2O4@reduced graphene oxide (rGO) composites with different amount of Sn(Fe)–C bonds between SnFe2O4 and rGO interface are synthesized through a simple one-pot solvothermal method and subsequent sintering at different temperatures. The composite with higher Sn(Fe)–C bonds content exhibits higher charge/discharge capacities of 1010/1020 mAh g−1 at 0.5 A g−1 for 300 cycles, and a better rate capability of 620 mAh g−1 at 2.0 A g−1. The synergistic effect of larger content of Sn(Fe)–C bonds and the formed flower-like networks between the pulverized SnFe2O4 and the rGO interface during charge/discharge is favor to improve the kinetics of SnFe2O4, because the networks are acted as the transport highway for electronics and lithium-ions. Moreover, the higher content and strong action of Sn(Fe)–C bonds can prevent the SnFe2O4 nanoparticles suffer from excessively volume change and pulverize during cycling. Designing chemically bonded metal oxides with graphene composite could provide a simple way to improve the cycle stability and rate capability of the LIBs.

中文翻译:

SnFe2O4@还原氧化石墨烯复合材料中Sn(Fe)-C键含量对锂离子电池电化学行为的影响

摘要 反尖晶石SnFe2O4作为锂离子电池(LIBs)的负极材料,由于其较低的电导率和充放电过程中的体积变化过大,循环稳定性较差。为了克服这些障碍,通过简单的一锅溶剂热法和随后在不同温度下烧结,合成了一系列在 SnFe2O4 和 rGO 界面之间具有不同数量 Sn(Fe)-C 键的 SnFe2O4@还原氧化石墨烯 (rGO) 复合材料。温度。具有更高 Sn(Fe)-C 键含量的复合材料在 0.5 A g-1 下表现出更高的充/放电容量(1010/1020 mAh g-1),循环 300 次,在 2.0 A 时具有更好的 620 mAh g-1 倍率g-1。在充电/放电过程中,Sn(Fe)-C 键含量较大以及 SnFe2O4 粉末与 rGO 界面之间形成的花状网络的协同效应有利于改善 SnFe2O4 的动力学,因为网络充当传输电子产品和锂离子的高速公路。此外,Sn(Fe)-C 键的较高含量和强作用可以防止 SnFe2O4 纳米颗粒在循环过程中发生过度的体积变化和粉化。用石墨烯复合材料设计化学键合的金属氧化物可以提供一种简单的方法来提高 LIB 的循环稳定性和倍率性能。Sn(Fe)-C 键的较高含量和强作用可以防止 SnFe2O4 纳米颗粒在循环过程中发生过度的体积变化和粉化。用石墨烯复合材料设计化学键合的金属氧化物可以提供一种简单的方法来提高 LIB 的循环稳定性和倍率性能。Sn(Fe)-C 键的较高含量和强作用可以防止 SnFe2O4 纳米颗粒在循环过程中发生过度的体积变化和粉化。用石墨烯复合材料设计化学键合的金属氧化物可以提供一种简单的方法来提高 LIB 的循环稳定性和倍率性能。
更新日期:2021-02-01
down
wechat
bug