当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new solution route for the synthesis of CuFeO2 and Mg-doped CuFeO2 as catalysts for dye degradation and CO2 conversion
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157235
Yu-Hsu Chang , Haicheng Wang , Ting-Fong Siao , Yuan-Han Lee , Shi-Yun Bai , Ching-Wen Liao , Jie-Kai Zhuang , Te-Wei Chiu , Chun-Hong Kuo

Abstract In this study, CuFeO2 and Mg-doped CuFeO2 powders are synthesized by using a novel chemical solution route under an ambient atmosphere. By regulating the pH of the reaction solution, on the basis of Pourbaix diagrams, and the stoichiometric ratio of copper to iron ions, delafossite CuFeO2 powders are formed at 363 K in an aqueous solution. Mg-doped CuFeO2 powders are also synthesized by using the same chemical route with the trace addition of Mg(II) ions. From the powder X-ray diffraction results, all diffraction peaks are of the delafossite structure with dominated 3R phase and few 2H phase. X-ray photoelectron spectroscopy measurements show that the chemical environments of the Cu and Fe ions are consistent with the binding energies of Cu(I) and Fe(III) in the delafossite structure of CuFeO2. The UV–vis spectra show that the CuFeO2 and Mg-doped CuFeO2 powders are both able to absorb light with wavelengths ranging from 300 to 700 nm. The calculated optical band gaps of the CuFeO2 and Mg-doped CuFeO2 powders are 1.35 and 1.5 eV, respectively. With regard to the application of the powders in the photodegradation of 50 ppm methylene blue, the results suggest that at an incident light irradiation of AM 1.5G, the photodegradation efficiency of the Mg-doped CuFeO2 powder is remarkably better than that of the CuFeO2 powder, which can be attributed to its higher carrier concentration. Furthermore, at an external bias of −1.2 V, these delafossite catalysts are able to convert CO2 to ethylene glycol through an electrocatalytic reaction.

中文翻译:

合成 CuFeO2 和掺杂 Mg 的 CuFeO2 作为染料降解和 CO2 转化催化剂的新溶液路线

摘要 在本研究中,通过使用一种新的化学溶液途径在环境气氛下合成了 CuFeO2 和掺杂 Mg 的 CuFeO2 粉末。通过调节反应溶液的 pH 值,根据普贝图和铜与铁离子的化学计量比,在 363 K 的水溶液中形成铜铁矿 CuFeO2 粉末。Mg 掺杂的 CuFeO2 粉末也是通过使用相同的化学途径合成的,并添加了痕量的 Mg(II) 离子。从粉末X射线衍射结果来看,所有的衍射峰都是以3R相为主,很少有2H相的黄铁矿结构。X 射线光电子能谱测量表明,Cu 和 Fe 离子的化学环境与 CuFeO2 的金铁矿结构中 Cu(I) 和 Fe(III) 的结合能一致。UV-vis 光谱表明 CuFeO2 和掺杂 Mg 的 CuFeO2 粉末都能够吸收波长范围为 300 到 700 nm 的光。CuFeO2 和掺杂 Mg 的 CuFeO2 粉末的计算光学带隙分别为 1.35 和 1.5 eV。关于粉末在50 ppm亚甲蓝光降解中的应用,结果表明,在AM 1.5G的入射光照射下,Mg掺杂的CuFeO2粉末的光降解效率明显优于CuFeO2粉末的光降解效率。 ,这可归因于其较高的载流子浓度。此外,在 -1.2 V 的外部偏压下,这些铜铁矿催化剂能够通过电催化反应将 CO2 转化为乙二醇。CuFeO2 和掺杂 Mg 的 CuFeO2 粉末的计算光学带隙分别为 1.35 和 1.5 eV。关于粉末在50 ppm亚甲蓝光降解中的应用,结果表明,在AM 1.5G的入射光照射下,Mg掺杂的CuFeO2粉末的光降解效率明显优于CuFeO2粉末的光降解效率。 ,这可归因于其较高的载流子浓度。此外,在 -1.2 V 的外部偏压下,这些铜铁矿催化剂能够通过电催化反应将 CO2 转化为乙二醇。CuFeO2 和掺杂 Mg 的 CuFeO2 粉末的计算光学带隙分别为 1.35 和 1.5 eV。关于粉末在50 ppm亚甲蓝光降解中的应用,结果表明,在AM 1.5G的入射光照射下,Mg掺杂的CuFeO2粉末的光降解效率明显优于CuFeO2粉末的光降解效率。 ,这可归因于其较高的载流子浓度。此外,在 -1.2 V 的外部偏压下,这些铜铁矿催化剂能够通过电催化反应将 CO2 转化为乙二醇。结果表明,在 AM 1.5G 的入射光照射下,Mg 掺杂的 CuFeO2 粉末的光降解效率明显优于 CuFeO2 粉末,这可归因于其较高的载流子浓度。此外,在 -1.2 V 的外部偏压下,这些铜铁矿催化剂能够通过电催化反应将 CO2 转化为乙二醇。结果表明,在 AM 1.5G 的入射光照射下,Mg 掺杂的 CuFeO2 粉末的光降解效率明显优于 CuFeO2 粉末,这可归因于其较高的载流子浓度。此外,在 -1.2 V 的外部偏压下,这些铜铁矿催化剂能够通过电催化反应将 CO2 转化为乙二醇。
更新日期:2021-02-01
down
wechat
bug