当前位置: X-MOL 学术Autom. Constr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Autonomous anchoring for robotic construction
Automation in Construction ( IF 9.6 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.autcon.2020.103391
Nathan Melenbrink , Katja Rinderspacher , Achim Menges , Justin Werfel

Abstract Advances in construction automation have tended to focus on either automating conventional earthmoving equipment or on the discrete assembly of superstructure elements. Neither paradigm has addressed anchoring introduced material into soil, a critical task for virtually all useful structures. Simple anchoring can be achieved by driving posts (discrete linear elements) or sheet piles (interlocking profiles) into the ground, serving as a foundation for a later superstructure. In this paper we present Romu, a wheeled robot that uses a combination of a vibratory hammer and its own body mass to drive both posts and piles into the ground. We report on the effects of hardware parameters on pile driving performance, and demonstrate operation in both controlled and natural environments. Romu is first configured to drive interlocking sheet piles. In addition to their utility as foundations, such walls could be useful directly as check dams, interventions used to prevent erosion and promote groundwater recharge in arid regions. We use simulations based on real-world terrains to explore the potential impact of a fleet of such robots deployed over a large watershed region, using a simple reactive approach to dynamically determine dam placement. Romu is then configured to drive a range of readily available building materials that commonly serve as posts. These include wooden slats that can be used for sand fencing, an intervention used to collect wind-blown sand to build barrier dunes. Post driving performance is characterized for a range of materials, and finally the use case of sand fencing is evaluated using physical tests at 1:10 scale in order to predict its potential impact. To broaden the utility of such robots in field settings, directions for future work include refinement of the hardware for improved operation in more terrains, increased capabilities for fuller autonomy, and integration with other construction tasks for more complex projects.

中文翻译:

用于机器人施工的自主锚固

摘要 建筑自动化的进步往往集中在传统土方设备的自动化或上部结构元件的离散装配上。两种范式都没有解决将引入材料锚定到土壤中的问题,这是几乎所有有用结构的关键任务。通过将柱子(离散线性元件)或板桩(互锁型材)打入地下,可以实现简单的锚固,作为后续上部结构的基础。在本文中,我们展示了 Romu,这是一个轮式机器人,它使用振动锤和自身体重的组合将柱子和桩子打入地下。我们报告了硬件参数对打桩性能的影响,并演示了在受控环境和自然环境中的操作。Romu 首先被配置为驱动互锁板桩。除了用作地基外,这种墙还可以直接用作检查水坝,在干旱地区用于防止侵蚀和促进地下水补给的干预措施。我们使用基于真实世界地形的模拟来探索部署在大型流域区域的此类机器人车队的潜在影响,使用简单的反应方法来动态确定大坝位置。然后,Romu 被配置为驱动一系列现成的建筑材料,这些建筑材料通常用作柱子。其中包括可用于沙栅栏的木板条,这是一种用于收集风沙以建造沙丘的干预措施。对一系列材料的后驾驶性能进行了表征,最后使用 1:10 比例的物理测试对沙栅栏的用例进行评估,以预测其潜在影响。
更新日期:2020-12-01
down
wechat
bug