当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic coupling enhancement of core-shell Au@Pt assemblies on ZnIn2S4 nanosheets towards photocatalytic H2 production
Applied Surface Science ( IF 6.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.apsusc.2020.147934
Huiqin An , Zhaotao Lv , Kun Zhang , Congying Deng , Hong Wang , Zongwei Xu , Meiri Wang , Zhen Yin

Abstract Hydrogen production via photocatalytic water splitting would be a promising technique for the utilization of hydrogen energy and solar energy. Surface plasmon resonance (SPR) of noble metal nanoparticles (NPs), such as Au, offers a fascinating arena to develop efficient photocatalysts with superior visible light harvesting properties and excellent catalytic activities. However, the photocatalytic performance enhancement based on SPR effect is limited by the relatively small contribution of the isolated plasmonic NPs. In the present work, the Au@Pt/ZnIn2S4 (ZIS) photocatalyst can be successfully constructed by the assemblies of core-shell Au@Pt NPs, consisted of plasmonic Au NP surrounded by catalytic Pt NPs, on three-dimensional (3D) ZIS microsphere in consideration of collective excitation of plasmonic NPs assemblies, demonstrating extraordinary catalytic performance of hydrogen production under visible light (≥420 nm) during water splitting process. The H2 production amount and rate over Au16@Pt/ZIS can reach 41747 μmol g−1 and 4174.7 μmol g−1h−1 under visible light, about 10 times higher than those of ZIS, respectively. The apparent quantum yield (AQY) of Au16@Pt/ZIS dramatically rises to 6.23%, nearly 10 times than that of ZIS (0.62%). Hence, the assembly formation of core-shell NPs and the introduction of ZIS can significantly enhance the photocatalytic performance of plasmonic metal NPs. The experimental results and FDTD simulation confirm that the plasmonic coupling effect of Au@Pt assemblies can generate much intensive electromagnetic (EM) field on ZIS surface, which further extends the light harvesting to visible-to-near infrared region and simultaneously boosts the generation rate of plasmon-induced hot electrons from Au and photoexcited electrons from ZIS. In addition, the Pt shell plays the role of electron sink, leading to the efficiently separation of electron-holes in Au NPs and ZIS and thus further increase the H2 evolution. All of these make Au@Pt/ZIS possess the extraordinary H2 evolution ability. We believe that the present strategy would be a significant contribution to design and prepare the efficient photocatalysts based on the plasmonic effect towards water splitting.

中文翻译:

ZnIn2S4 纳米片上核壳 Au@Pt 组件的等离子体耦合增强对光催化制氢

摘要 光催化分解水制氢将是利用氢能和太阳能的一种很有前景的技术。贵金属纳米粒子 (NP)(例如 Au)的表面等离子体共振 (SPR) 为开发具有卓越可见光捕获性能和出色催化活性的高效光催化剂提供了一个迷人的领域。然而,基于 SPR 效应的光催化性能增强受到孤立的等离子体 NPs 相对较小贡献的限制。在目前的工作中,Au@Pt/ZnIn2S4 (ZIS) 光催化剂可以通过核壳 Au@Pt NPs 的组装成功构建,由催化 Pt NPs 包围的等离子体 Au NP 组成,在三维(3D)ZIS 上考虑到等离子体 NPs 组件的集体激发的微球,证明在水分解过程中在可见光(≥420 nm)下具有非凡的制氢催化性能。在可见光下,Au16@Pt/ZIS 的产氢量和产氢率分别达到 41747 μmol g-1 和 4174.7 μmol g-1h-1,分别比 ZIS 高约 10 倍。Au16@Pt/ZIS的表观量子产率(AQY)急剧上升至6.23%,是ZIS(0.62%)的近10倍。因此,核壳纳米粒子的组装形成和 ZIS 的引入可以显着提高等离子体金属纳米粒子的光催化性能。实验结果和 FDTD 模拟证实,Au@Pt 组件的等离子体耦合效应可以在 ZIS 表面产生非常强的电磁(EM)场,这进一步将光收集扩展到可见光至近红外区域,同时提高了来自 Au 的等离子体诱导的热电子和来自 ZIS 的光激发电子的产生率。此外,Pt 壳层起到电子汇的作用,导致 Au NPs 和 ZIS 中电子空穴的有效分离,从而进一步增加 H2 的析出。所有这些都使 Au@Pt/ZIS 具有非凡的 H2 演化能力。我们相信,目前的策略将对基于对水分解的等离子体效应设计和制备有效的光催化剂做出重大贡献。导致 Au NPs 和 ZIS 中电子空穴的有效分离,从而进一步增加 H2 的释放。所有这些都使 Au@Pt/ZIS 具有非凡的 H2 演化能力。我们相信,目前的策略将对基于对水分解的等离子体效应设计和制备有效的光催化剂做出重大贡献。导致 Au NPs 和 ZIS 中电子空穴的有效分离,从而进一步增加 H2 的释放。所有这些都使 Au@Pt/ZIS 具有非凡的 H2 演化能力。我们相信,目前的策略将对基于对水分解的等离子体效应设计和制备有效的光催化剂做出重大贡献。
更新日期:2021-01-01
down
wechat
bug