当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A clustering-based differential evolution with different crowding factors for nonlinear equations system
Applied Soft Computing ( IF 8.7 ) Pub Date : 2020-09-22 , DOI: 10.1016/j.asoc.2020.106733
Jianye Wu , Wenyin Gong , Ling Wang

Solving nonlinear equations systems (NESs) is one of the most important tasks in numerical computation. It is common that most NESs contain more than one root. Generally, these roots are equally important. Therefore, locating as many of these roots as possible is extremely useful; however, it is a difficult task. Recently, the use of evolutionary algorithms (EAs) for NESs has been given more consideration. There are several issues that need to be considered when applying EAs to solve NESs: (1) How to guide the population towards multiple roots, (2) how to tackle individuals which trip into local optimum, and (3) how to minimize replacement errors. In this paper, we deal with the first issue by introducing a one-step k-means clustering method combined with niching. In this way, individuals will search for different roots in their respective directions. For the second issue, we propose two methods to form species, the goal of which is to promote individuals to get rid of local optima. Finally, different crowding factors are adopted to reduce replacement errors. By assembling these improvements, a one-step k-means clustering based differential evolution, namely KSDE, is proposed. To evaluate the effectiveness of the proposal, we use 30 NES problems from the literature as the test suite. Experimental results demonstrate KSDE has great potential to locate multiple roots in a single run. Furthermore, according to the evaluation criteria, KSDE shows better performance compared with other state-of-the-art methods.



中文翻译:

非线性方程组基于簇的具有不同拥挤因子的微分演化

求解非线性方程组(NESs)是数值计算中最重要的任务之一。通常,大多数NES包含多个根。通常,这些根源同样重要。因此,尽可能多地找到这些根是非常有用的。但是,这是一项艰巨的任务。近来,已经对将演化算法(EA)用于NES进行了更多考虑。应用EA来解决NES时,需要考虑几个问题:(1)如何引导人口趋于多个根源;(2)如何应对达到局部最优的个人;(3)如何使替换错误最小化。在本文中,我们通过引入结合小生境的单步k均值聚类方法来处理第一个问题。通过这种方式,个人将在各自的方向上寻找不同的根源。对于第二个问题,我们提出了两种形成物种的方法,其目的是促进个人摆脱局部最优。最后,采用不同的拥挤因素以减少更换错误。通过组合这些改进,提出了一种基于k-means聚类的单步差分演化算法,即KSDE。为了评估该建议的有效性,我们使用文献中的30个NES问题作为测试套件。实验结果表明,KSDE具有在一次运行中定位多个根的巨大潜力。此外,根据评估标准,KSDE与其他最新方法相比具有更好的性能。其目的是促进个人摆脱局部最优。最后,采用不同的拥挤因素以减少更换错误。通过组合这些改进,提出了一种基于k-means聚类的单步差分演化算法,即KSDE。为了评估该建议的有效性,我们使用文献中的30个NES问题作为测试套件。实验结果表明,KSDE具有在一次运行中定位多个根的巨大潜力。此外,根据评估标准,KSDE与其他最新方法相比具有更好的性能。其目的是促进个人摆脱局部最优。最后,采用不同的拥挤因素以减少更换错误。通过组合这些改进,提出了一种基于k-means聚类的单步差分演化算法,即KSDE。为了评估该建议的有效性,我们使用文献中的30个NES问题作为测试套件。实验结果表明,KSDE具有在一次运行中定位多个根的巨大潜力。此外,根据评估标准,KSDE与其他最新方法相比具有更好的性能。为了评估该建议的有效性,我们使用文献中的30个NES问题作为测试套件。实验结果表明,KSDE具有在一次运行中定位多个根的巨大潜力。此外,根据评估标准,KSDE与其他最新方法相比具有更好的性能。为了评估该建议的有效性,我们使用文献中的30个NES问题作为测试套件。实验结果表明,KSDE具有在一次运行中定位多个根的巨大潜力。此外,根据评估标准,KSDE与其他最新方法相比具有更好的性能。

更新日期:2020-09-22
down
wechat
bug