当前位置: X-MOL 学术J. Innov. Opt. Health Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aggregation-induced emission nanoparticles for in vivo three-photon fluorescence microscopic rat brain angiography
Journal of Innovative Optical Health Sciences ( IF 2.3 ) Pub Date : 2019-03-28 , DOI: 10.1142/s1793545819500123
Hequn Zhang 1 , Weisi Xie 1 , Ming Chen 2 , Liang Zhu 3 , Zhe Feng 1 , Yalun Wang 1 , Wang Xi 3 , Ben Zhong Tang 2 , Jun Qian 1
Affiliation  

Rodents are popular biological models for physiological and behavioral research in neuroscience and rats are better models than mice due to their higher genome similarity to human and more accessible surgical procedures. However, rat brain is larger than mice brain and it needs powerful imaging tools to implement better penetration against the scattering of the thicker brain tissue. Three-photon fluorescence microscopy (3PFM) combined with near-infrared (NIR) excitation has great potentials for brain circuits imaging because of its abilities of anti-scattering, deep-tissue imaging, and high signal-to-noise ratio (SNR). In this work, a type of AIE luminogen with red fluorescence was synthesized and encapsulated with Pluronic F-127 to make up form nanoparticles (NPs). Bright DCDPP-2TPA NPs were employed for in vivo three-photon fluorescent laser scanning microscopy of blood vessels in rats brain under 1550[Formula: see text]nm femtosecond laser excitation. A fine three-dimensional (3D) reconstruction up to the deepness of 600[Formula: see text][Formula: see text]m was achieved and the blood flow velocity of a selected vessel was measured in vivo as well. Our 3PFM deep brain imaging method simultaneously recorded the morphology and function of the brain blood vessels in vivo in the rat model. Using this angiography combined with the arsenal of rodent’s brain disease, models can accelerate the neuroscience research and clinical diagnosis of brain disease in the future.

中文翻译:

用于体内三光子荧光显微大鼠脑血管造影的聚集诱导发射纳米粒子

啮齿动物是神经科学生理和行为研究的流行生物学模型,大鼠是比小鼠更好的模型,因为它们与人类的基因组相似性更高,而且更容易进行外科手术。然而,大鼠的大脑比小鼠的大脑大,它需要强大的成像工具来实现更好的穿透,以对抗较厚的脑组织的散射。三光子荧光显微镜 (3PFM) 结合近红外 (NIR) 激发具有抗散射、深层组织成像和高信噪比 (SNR) 的能力,在脑电路成像方面具有巨大潜力。在这项工作中,合成了一种具有红色荧光的 AIE 发光剂,并用 Pluronic F-127 封装形成纳米颗粒 (NPs)。明亮的 DCDPP-2TPA NPs 被用于在 1550[公式:见正文]nm 飞秒激光激发下对大鼠脑血管进行体内三光子荧光激光扫描显微术。实现了深度达 600[公式:见文本][公式:见文本]m 的精细三维 (3D) 重建,并在体内测量了选定血管的血流速度。我们的 3PFM 深部脑成像方法同时记录了大鼠模型体内脑血管的形态和功能。使用这种血管造影结合啮齿动物脑疾病的武器库,模型可以在未来加速脑疾病的神经科学研究和临床诊断。实现了深度达 600[公式:见文本][公式:见文本]m 的精细三维 (3D) 重建,并在体内测量了选定血管的血流速度。我们的 3PFM 深部脑成像方法同时记录了大鼠模型体内脑血管的形态和功能。使用这种血管造影结合啮齿动物脑疾病的武器库,模型可以在未来加速脑疾病的神经科学研究和临床诊断。实现了深度达 600[公式:见文本][公式:见文本]m 的精细三维 (3D) 重建,并在体内测量了选定血管的血流速度。我们的 3PFM 深部脑成像方法同时记录了大鼠模型体内脑血管的形态和功能。使用这种血管造影结合啮齿动物脑疾病的武器库,模型可以在未来加速脑疾病的神经科学研究和临床诊断。
更新日期:2019-03-28
down
wechat
bug