当前位置: X-MOL 学术Int. J. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Post-cycling Interface Strength Test of Geogrids
International Journal of Civil Engineering ( IF 1.8 ) Pub Date : 2020-04-30 , DOI: 10.1007/s40999-020-00518-3
Gian Franco Napa Garcia , Paulo César Lodi

Geosynthetic-reinforced soil structures are commonly used in seismic design in regions. The performance of GRES under seismic conditions can be found to range from very good to catastrophic. This paper presents the implementation of a test to evaluate the influence of pre-cycling on the post-cycling resistance of a soil–geogrid system. Tests were performed on a PVE uniaxial geogrid with a tensile strength of 400 kN/m and a clean sand with 89% compaction and friction angle of 37.5°. The system was subjected to cyclic pullout tests at 40 and 80% of the monotonic strength. After the pre-cycling, a posterior monotonic pullout test was performed to evaluate the influence of the previous cycling on the final post-cycling strength. A test protocol was established to apply 50, 100, 500 and 5000 cycles with 40% and 80% pullout resistance amplitudes. At the 40% amplitude, the system exhibited stable increasing behavior in terms of resistance and cyclic displacement. Failure was not reached during the pre-cycling stage at 40% amplitude. At the 80% amplitude, the system failed at 250 cycles, and cyclic displacement was found to be erratic for all pre-cycling cases. The results suggest a general tendency of the pre-cycling to increase the post-cycling resistance. However, a combination of high cyclic amplitude with large number of cycles may lead to failure. Exposure to seismic events could be considered in the design of GRES though a rationally chosen reduction factor is applied.

中文翻译:

土工格栅后循环界面强度试验

土工合成材料加筋土结构通常用于地区的抗震设计。可以发现 GRES 在地震条件下的性能从非常好到灾难性不等。本文介绍了一项测试的实施,以评估预循环对土壤 - 土工格栅系统的循环后阻力的影响。测试在抗拉强度为 400 kN/m 的 PVE 单轴土工格栅和具有 89% 压实度和 37.5° 摩擦角的干净砂土上进行。该系统在 40% 和 80% 的单调强度下进行了循环拉拔试验。预循环后,进行后单调拔出试验,以评估前一次循环对最终循环后强度的影响。建立了一个测试协议,以应用 50、100、500 和 5000 次循环,拉拔阻力幅度为 40% 和 80%。在 40% 振幅下,系统在阻力和循环位移方面表现出稳定的增加行为。在预循环阶段以 40% 的幅度未达到故障。在 80% 振幅下,系统在 250 次循环时失效,并且发现循环位移对于所有预循环情况都是不稳定的。结果表明,循环前的普遍趋势会增加循环后的阻力。然而,高循环幅度与大量循环的组合可能会导致故障。尽管应用了合理选择的折减系数,但在 GRES 的设计中可以考虑地震事件的暴露。该系统在 250 次循环时失效,并且发现循环位移对于所有预循环情况都是不稳定的。结果表明,循环前的普遍趋势会增加循环后的阻力。然而,高循环幅度与大量循环的组合可能会导致故障。尽管应用了合理选择的折减系数,但在 GRES 的设计中可以考虑地震事件的暴露。该系统在 250 次循环时失效,并且发现循环位移对于所有预循环情况都是不稳定的。结果表明,循环前的普遍趋势会增加循环后的阻力。然而,高循环幅度与大量循环的组合可能会导致故障。尽管应用了合理选择的折减系数,但在 GRES 的设计中可以考虑地震事件的暴露。
更新日期:2020-04-30
down
wechat
bug