当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes
Nanoscale Advances ( IF 4.6 ) Pub Date : 2020-09-21 , DOI: 10.1039/d0na00333f
Rituparna Ghosh 1 , Abha Misra 1
Affiliation  

A three-dimensional carbon nanotube (CNT) cellular structure presents a unique revelation of microstructure dependent mechanical and viscoelastic properties. Tailored CNT–CNT entanglement demonstrated a direct impact on both the strength and viscosity of the structure. Unlike traditional foams, an increase in the CNT–CNT entanglement progressively increases both the strength and the viscosity. The study reveals that an effective load is directly transferred within the structure through the short-range entanglements (nodes) resulting in an enhanced mechanical strength, whereas the long-range entanglements (bundles) regulate the energy absorption capacity. A three-dimensional structure of entangled CNT–CNT shows ∼15 and ∼26 times enhancement in the storage and loss moduli, respectively. The higher peak stress and energy loss are increased by ∼9.2 fold and ∼8.8 fold, respectively, compared to those of the cellular structures without entanglement. The study also revealed that the viscoelastic properties i.e. the Young's modulus, stress relaxation, strain rate sensitivity and fatigue properties can be modulated by tailoring the CNT–CNT entanglements within the cellular structure. A qualitative analysis is performed using finite element simulation to show the impact of CNT–CNT entanglements on the viscoelastic properties. The finding paves a way for designing a new class of meta-cellular materials which are viscous yet strong for shock absorbing or mechanical damping applications.

中文翻译:

通过碳纳米管的纳米级缠结定制聚合物蜂窝结构的粘弹性

三维碳纳米管 (CNT) 蜂窝结构呈现出与微观结构相关的机械和粘弹性特性的独特启示。定制的 CNT-CNT 缠结对结构的强度和粘度都有直接影响。与传统泡沫不同,CNT-CNT 缠结的增加会逐渐增加强度和粘度。研究表明,有效载荷通过短程缠结(节点)直接在结构内传递,从而提高了机械强度,而长程缠结(束)则调节了能量吸收能力。纠缠的 CNT-CNT 的三维结构分别显示出 15 倍和 26 倍的存储模量和损耗模量增强。较高的峰值应力和能量损失增加了~9。与没有纠缠的蜂窝结构相比,分别是 2 倍和 8.8 倍。该研究还揭示了粘弹性杨氏模量、应力松弛、应变率敏感性和疲劳性能可以通过调整蜂窝结构内的CNT-CNT 缠结来调节。使用有限元模拟进行定性分析,以显示 CNT-CNT 缠结对粘弹性性能的影响。这一发现为设计一类新的超细胞材料铺平了道路,这种材料既粘稠又坚固,可用于减震或机械阻尼应用。
更新日期:2020-11-03
down
wechat
bug