当前位置: X-MOL 学术Int. J. Extrem. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a motorised plasma delivery system for ultra-precision large optical fabrication
International Journal of Extreme Manufacturing ( IF 14.7 ) Pub Date : 2020-09-21 , DOI: 10.1088/2631-7990/abab49
Hui Zhou 1 , Adam Bennett 1 , Marco Castelli 2 , Renaud Jourdain 1 , Jiang Guo 3 , Nan Yu 4
Affiliation  

A unique plasma figuring (PF) process was created and demonstrated at Cranfield University for manufacturing extremely large telescopes. The atmospheric pressure processing is faster and more cost-effective than other finishing processes; thus, providing an important alternative for large optical surfaces. The industrial scale manufacturing of thousands of ultra-precision metre-scale optics requires a robust PF machine: this requirement is achieved by making the plasma delivery system (PDS) performance repeatable. In this study, a dedicated PDS for large optical manufacturing was proposed to meet the industrial requirement. The PDS is based on an L-type radiofrequency (RF) network, a power supply, and an inductively coupled plasma torch. However, the complexities of these technologies require an in depth understanding of the integrated components that from the PDS. A smart control system for the modified PDS was created. This novel control system aims to make the characterization process deterministic: by automating the tuning of critical electrical components in the RF network, which is achieved by the use of in-line metrology. This paper describes the main design aspects. The PDS was tested with a good correlation between capacitance and RF frequencies. The robust PDS design enables a stable discharge of plasma with a low deviation of RF signals during the total 15 hours’ test.



中文翻译:

用于超精密大型光学制造的电动等离子体输送系统的设计

克兰菲尔德大学(Cranfield University)创建并展示了一种独特的等离子体成像(PF)工艺,用于制造超大型望远镜。与其他精加工工艺相比,大气压工艺更快,更具成本效益。因此,为大型光学表面提供了重要的替代选择。工业规模的制造数以千计的超精密米级光学器件需要一台坚固的PF机器:通过使等离子传输系统(PDS)性能可重复,可以实现这一要求。在这项研究中,提出了用于大型光学制造的专用PDS,以满足工业需求。PDS基于L型射频(RF)网络,电源和感应耦合等离子体炬。然而,这些技术的复杂性要求对PDS中的集成组件有深入的了解。创建了用于修改后的PDS的智能控制系统。这种新颖的控制系统旨在使表征过程具有确定性:通过自动化射频网络中关键电气组件的调谐,这可以通过使用在线计量来实现。本文介绍了主要的设计方面。在电容和RF频率之间具有良好相关性的情况下测试了PDS。坚固的PDS设计可在整个15小时的测试过程中以低RF信号偏差实现等离子体的稳定放电。通过自动化调谐射频网络中的关键电气组件,这可以通过使用在线计量来实现。本文介绍了主要的设计方面。在电容和RF频率之间具有良好相关性的情况下测试了PDS。坚固的PDS设计可在整个15小时的测试过程中以低RF信号偏差实现等离子体的稳定放电。通过自动化调谐射频网络中的关键电气组件,这可以通过使用在线计量来实现。本文介绍了主要的设计方面。在电容和RF频率之间具有良好相关性的情况下测试了PDS。坚固的PDS设计可在整个15小时的测试过程中以低RF信号偏差实现等离子体的稳定放电。

更新日期:2020-09-21
down
wechat
bug