当前位置: X-MOL 学术Astron. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Astraea: Predicting Long Rotation Periods with 27 Day Light Curves
The Astronomical Journal ( IF 5.1 ) Pub Date : 2020-09-21 , DOI: 10.3847/1538-3881/abada4
Yuxi(Lucy) Lu 1, 2 , Ruth Angus 1, 2, 3 , Marcel A. Ageros 1 , Kirsten Blancato 1 , Melissa Ness 1 , Danielle Rowland 2 , Jason L. Curtis 2 , Sam Grunblatt 2, 3
Affiliation  

The rotation periods of planet-hosting stars can be used for modeling and mitigating the impact of magnetic activity in radial velocity measurements and can help constrain the high-energy flux environment and space weather of planetary systems. Millions of stars and thousands of planet hosts are observed with the Transiting Exoplanet Survey Satellite (TESS). However, most will only be observed for 27 contiguous days in a year, making it difficult to measure rotation periods with traditional methods. This is especially problematic for field M dwarfs, which are ideal candidates for exoplanet searches, but which tend to have periods in excess of the 27-day observing baseline. We present a new tool, Astraea, for predicting long rotation periods from short-duration light curves combined with stellar parameters from Gaia DR2. Using Astraea, we can predict the rotation periods from Kepler 4-year light curves with 13% uncertainty overall (and a 9% uncertainty for periods > 30 days). By training on 27-day Kepler light curve segments, Astraea can predict rotation periods up to 150 days with 9% uncertainty (5% for periods > 30 days). After training this tool on these 27-day Kepler light curve segments, we applied \texttt{Astraea} to real TESS data. For the 195 stars that were observed by both Kepler and TESS, we were able to predict the rotation periods with 55% uncertainty despite the wild differences in systematics.

中文翻译:

Astraea:用 27 天光曲线预测长轮换周期

行星宿主恒星的自转周期可用于模拟和减轻径向速度测量中磁活动的影响,并有助于限制行星系统的高能通量环境和空间天气。凌日系外行星测量卫星 (TESS) 可以观测到数百万颗恒星和数千颗行星宿主。然而,大多数只能在一年中连续观察 27 天,因此很难用传统方法测量轮换周期。这对于场 M 矮星尤其成问题,它们是系外行星搜索的理想候选者,但其周期往往超过 27 天的观测基线。我们提出了一种新工具 Astraea,用于根据短时光变曲线和 Gaia DR2 的恒星参数预测长自转周期。使用 Astraea,我们可以根据开普勒 4 年光变曲线预测轮转周期,总体不确定性为 13%(不确定性大于 30 天的周期为 9%)。通过对 27 天开普勒光变曲线段进行训练,Astraea 可以预测长达 150 天的旋转周期,不确定性为 9%(周期 > 30 天为 5%)。在这些 27 天开普勒光曲线段上训练此工具后,我们将 \texttt{Astraea} 应用于真实的 TESS 数据。对于开普勒和苔丝观测到的 195 颗恒星,尽管系统学存在巨大差异,但我们能够以 55% 的不确定性预测旋转周期。Astraea 可以预测轮换周期长达 150 天,不确定性为 9%(周期 > 30 天为 5%)。在这些 27 天开普勒光曲线段上训练此工具后,我们将 \texttt{Astraea} 应用于真实的 TESS 数据。对于开普勒和苔丝观测到的 195 颗恒星,尽管系统学存在巨大差异,但我们能够以 55% 的不确定性预测旋转周期。Astraea 可以预测轮换周期长达 150 天,不确定性为 9%(周期 > 30 天为 5%)。在这些 27 天开普勒光曲线段上训练此工具后,我们将 \texttt{Astraea} 应用于真实的 TESS 数据。对于开普勒和苔丝观测到的 195 颗恒星,尽管系统学存在巨大差异,但我们能够以 55% 的不确定性预测旋转周期。
更新日期:2020-09-21
down
wechat
bug