当前位置: X-MOL 学术Nat. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-cycle voltage hysteresis in Li-rich 3 d cathodes associated with molecular O 2 trapped in the bulk
Nature Energy ( IF 49.7 ) Pub Date : 2020-09-21 , DOI: 10.1038/s41560-020-00697-2
Robert A. House , Gregory J. Rees , Miguel A. Pérez-Osorio , John-Joseph Marie , Edouard Boivin , Alex W. Robertson , Abhishek Nag , Mirian Garcia-Fernandez , Ke-Jin Zhou , Peter G. Bruce

Li-rich cathode materials are potential candidates for next-generation Li-ion batteries. However, they exhibit a large voltage hysteresis on the first charge/discharge cycle, which involves a substantial (up to 1 V) loss of voltage and therefore energy density. For Na cathodes, for example Na0.75[Li0.25Mn0.75]O2, voltage hysteresis can be explained by the formation of molecular O2 trapped in voids within the particles. Here we show that this is also the case for Li1.2Ni0.13Co0.13Mn0.54O2. Resonant inelastic X-ray scattering and 17O magic angle spinning NMR spectroscopy show that molecular O2, rather than O22−, forms within the particles on the oxidation of O2− at 4.6 V versus Li+/Li on charge. These O2 molecules are reduced back to O2− on discharge, but at the lower voltage of 3.75 V, which explains the voltage hysteresis in Li-rich cathodes. 17O magic angle spinning NMR spectroscopy indicates a quantity of bulk O2 consistent with the O-redox charge capacity minus the small quantity of O2 loss from the surface. The implication is that O2, trapped in the bulk and lost from the surface, can explain O-redox.



中文翻译:

富锂3 d阴极中的第一周期电压滞后与被困在主体中的分子O 2相关

富含锂的阴极材料是下一代锂离子电池的潜在候选材料。但是,它们在第一个充电/放电循环中表现出较大的电压滞后现象,这会导致电压的大量损失(高达1 V),从而导致能量密度降低。对于Na阴极,例如Na 0.75 [Li 0.25 Mn 0.75 ] O 2,电压滞后现象可以通过在颗粒内的空隙中捕获的分子O 2的形成来解释。在此我们表明,对于Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2也是这种情况。共振非弹性X射线散射和17ø魔角旋转NMR光谱表明,分子直径:2,而不是Ô 2 2-,对的O-氧化在颗粒内形成2-在4.6V对Li + /锂上的电荷。这些O 2分子在放电时还原为O 2-,但在3.75 V的较低电压下,这解释了富锂阴极的电压滞后现象。17 O魔角旋转NMR光谱表明,大量的O 2与O-氧化还原电荷容量一致,减去从表面损失的少量O 2。这意味着O 2,被困在大块中并从表面消失,可以解释O-氧化还原。

更新日期:2020-09-21
down
wechat
bug