当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An active self-cleaning surface system for photovoltaic modules using anisotropic ratchet conveyors and mechanical vibration
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2020-09-21 , DOI: 10.1038/s41378-020-00197-z
Di Sun 1, 2 , Karl F Böhringer 1, 2
Affiliation  

The purpose of this work is to develop an active self-cleaning system that removes contaminants from a solar module surface by means of an automatic, water-saving, and labor-free process. The output efficiency of a solar module can be degraded over time by dust accumulation on top of the cover glass, which is often referred to as “soiling”. This paper focuses on creating an active self-cleaning surface system using a combination of microsized features and mechanical vibration. The features, which are termed anisotropic ratchet conveyors (ARCs), consist of hydrophilic curved rungs on a hydrophobic background. Two different ARC systems have been designed and fabricated with self-assembled monolayer (SAM) silane and fluoropolymer thin film (Cytop). Fabrication processes were established to fabricate these two systems, including patterning Cytop without degrading the original Cytop hydrophobicity. Water droplet transport characteristics, including anisotropic driving force, droplet resonance mode, cleaning mechanisms, and system power consumption, were studied with the help of a high-speed camera and custom-made test benches. The droplet can be transported on the ARC surface at a speed of 27 mm/s and can clean a variety of dust particles, either water-soluble or insoluble. Optical transmission was measured to show that Cytop can improve transmittance by 2.5~3.5% across the entire visible wavelength range. Real-time demonstrations of droplet transport and surface cleaning were performed, in which the solar modules achieved a 23 percentage-point gain after cleaning.



中文翻译:

使用各向异性棘轮输送机和机械振动的光伏组件主动自清洁表面系统

这项工作的目的是开发一种主动自清洁系统,通过自动、节水和免人工的过程从太阳能组件表面去除污染物。随着时间的推移,太阳能模块的输出效率会因覆盖玻璃顶部的灰尘堆积而降低,这通常被称为“弄脏”。本文重点介绍如何结合使用微型特征和机械振动来创建主动自清洁表面系统。这些特征被称为各向异性棘轮输送机 (ARC),由疏水背景上的亲水弯曲横档组成。已经设计并制造了两种不同的 ARC 系统,其中包括自组装单层 (SAM) 硅烷和含氟聚合物薄膜 (Cytop)。建立制造工艺来制造这两个系统,包括在不降低原始 Cytop 疏水性的情况下对 Cytop 进行图案化。借助高速相机和定制测试台,研究了水滴传输特性,包括各向异性驱动力、水滴共振模式、清洁机制和系统功耗。液滴可以以 27 毫米/秒的速度在 ARC 表面上传输,并且可以清洁各种水溶性或不溶性灰尘颗粒。测量光透射率表明 Cytop 可以在整个可见光波长范围内将透射率提高 2.5~3.5%。进行了液滴传输和表面清洁的实时演示,其中太阳能模块在清洁后获得了 23 个百分点的增益。包括各向异性驱动力、液滴共振模式、清洁机制和系统功耗,在高速相机和定制测试台的帮助下进行了研究。液滴可以以 27 毫米/秒的速度在 ARC 表面上传输,并且可以清洁各种水溶性或不溶性灰尘颗粒。测量光透射率表明 Cytop 可以在整个可见光波长范围内将透射率提高 2.5~3.5%。进行了液滴传输和表面清洁的实时演示,其中太阳能模块在清洁后获得了 23 个百分点的增益。包括各向异性驱动力、液滴共振模式、清洁机制和系统功耗,在高速相机和定制测试台的帮助下进行了研究。液滴可以以 27 毫米/秒的速度在 ARC 表面上传输,并且可以清洁各种水溶性或不溶性灰尘颗粒。测量光透射率表明 Cytop 可以在整个可见光波长范围内将透射率提高 2.5~3.5%。进行了液滴传输和表面清洁的实时演示,其中太阳能模块在清洁后获得了 23 个百分点的增益。液滴可以以 27 毫米/秒的速度在 ARC 表面上传输,并且可以清洁各种水溶性或不溶性灰尘颗粒。测量光透射率表明 Cytop 可以在整个可见光波长范围内将透射率提高 2.5~3.5%。进行了液滴传输和表面清洁的实时演示,其中太阳能模块在清洁后获得了 23 个百分点的增益。液滴可以以 27 毫米/秒的速度在 ARC 表面上传输,并且可以清洁各种水溶性或不溶性灰尘颗粒。测量光透射率表明 Cytop 可以在整个可见光波长范围内将透射率提高 2.5~3.5%。进行了液滴传输和表面清洁的实时演示,其中太阳能模块在清洁后获得了 23 个百分点的增益。

更新日期:2020-09-21
down
wechat
bug