当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization
Advanced Materials ( IF 27.4 ) Pub Date : 2020-09-21 , DOI: 10.1002/adma.202002882
Dylan Shah 1 , Bilige Yang 1 , Sam Kriegman 2 , Michael Levin 3, 4 , Josh Bongard 2 , Rebecca Kramer-Bottiglio 1
Affiliation  

One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next‐generation shape changing robots are also discussed.

中文翻译:


变形机器人:生物灵感、模拟和物理实现



生物系统和人工系统之间的关键区别之一是活体组织的动态可塑性,能够通过重新配置物理结构和行为控制策略来适应不同的环境条件、任务或损伤。缺乏动态可塑性是必须在自然世界中稳健运行的人工系统的一个重大限制。最近,研究人员开始利用再生和变形生物体的见解,设计能够编辑自身结构的机器人,以便在不断变化的需求下更有效地执行任务,并创建新的算法来控制这些不断变化的解剖结构。这里概述了与通过改变形状来增强和扩展其功能的机器人相关的文献。还讨论了相关的重大挑战,包括形状感知、发现和改变,这些挑战依赖于多功能材料、分布式驱动和传感以及体细胞控制的创新来实现下一代形状改变机器人。
更新日期:2020-09-21
down
wechat
bug