当前位置: X-MOL 学术Resour. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid Inclusions and CHOSPb Isotopes: Implications for the Genesis of the Zhuanshanzi Gold Deposit on the Northern Margin of the North China Craton
Resource Geology ( IF 1.1 ) Pub Date : 2018-08-29 , DOI: 10.1111/rge.12178
Zhenjun Sun 1, 2 , Zongqi Wang 1 , Henan Yu 2 , Chengyang Wang 2 , Guanghu Liu 2 , Xaingdong Bai 2
Affiliation  

The Zhuanshanzi gold deposit lies in the eastern section of the Xingmeng orogenic belt and the northern section of the Chifeng-Chaoyang gold belt. The gold veins are strictly controlled by a NW-oriented shear fault zone. Quartz veins and altered tectonic rock-type gold veins are the main vein types. The deposits can be divided into four mineralization stages, and the second and third metallogenic stages are the main metallogenic stages. In this paper, based on the detailed field geological surveys, an analysis of the orebody and ore characteristics, microtemperature measurement of fluid inclusions, the Laser Raman spectrum of the inclusions, determination of C H O S Pb isotopic geochemical characteristics, and so on were carried out to explore the origin of the ore-forming fluids, ore-forming materials, and the genesis of the deposits. The results show that the fluid inclusions can be divided into four types: type I – gas–liquid two-phase inclusions; type II – gas-rich inclusions; type III– liquid inclusions; and type IV – CO2-containing threephase inclusions. However, they are dominated by type Ib – gas liquid inclusions and type IV – three-phase inclusions containing CO2. The gas compositions are mainly H2O and CO2, indicating that the metallogenic system is a CO2 H2O NaCl system. The homogenization temperature of the ore-forming fluid evolved from a middle temperature to a low temperature, and the temperature of the fluid was further reduced due to meteoric water mixing during the late stage, as well as a lack of CO2 components, and eventually evolved into a simple NaCl H2O hydrothermal system. C H O S Pb isotope research proved that the ore-forming fluids are mainly magmatic water during the early stage, with abundant meteoric water mixed in during the late stage. Ore-forming materials originated mostly from hypomagma and were possibly influenced by the surrounding rocks, suggesting that the ore-forming materials were mainly magmatic hydrothermal deposits, with a small amount of crustal component. The fluid immiscibility and the CO2 and CH4 gases in the fluids played an active and important role in the precipitation and enrichment of Au during different metallogenic stages. The deposit is considered a magmatic hydrothermal deposit of middle– low temperature.

中文翻译:

流体包裹体与CHOSPb同位素:对华北克拉通北缘转山子金矿床成因的启示

转山子金矿床位于兴蒙造山带东段和赤峰-朝阳金带北段。金矿脉受到 NW 向剪切断层带的严格控制。石英矿脉和蚀变构造岩型金矿脉是主要矿脉类型。矿床可分为四个成矿阶段,第二、第三成矿阶段为主要成矿阶段。本文在详细的野外地质调查的基础上,对矿体和矿石特征进行了分析,流体包裹体的微温测量,包裹体的激光拉曼光谱,CHOS Pb同位素地球化学特征的测定等进行了研究。探索成矿流体的成因、成矿物质和矿床的成因。结果表明,流体包裹体可分为四种类型:Ⅰ类——气液两相包裹体;II型——富含气体的包裹体;III型——液体包裹体;和类型 IV – 含 CO2 的三相夹杂物。然而,它们以 Ib 型——气液包裹体和 IV 型——含 CO2 的三相包裹体为主。气体成分主要为H2O和CO2,说明成矿系统为CO2H2ONaCl系统。成矿流体均化温度由中温向低温演化,后期由于大气水的混入和CO2成分的缺乏,流体温度进一步降低,最终演化进入一个简单的 NaCl H2O 水热系统。CHOS Pb同位素研究证明,成矿流体早期以岩浆水为主,晚期混入大量大气水。成矿物质主要来源于低岩浆,可能受围岩影响,表明成矿物质主要为岩浆热液矿床,少量地壳成分。流体的不混溶性和流体中的 CO2 和 CH4 气体对不同成矿阶段 Au 的沉淀和富集起到了积极而重要的作用。该矿床为中低温岩浆热液矿床。成矿物质主要来源于低岩浆,可能受围岩影响,表明成矿物质主要为岩浆热液矿床,少量地壳成分。流体的不混溶性和流体中的 CO2 和 CH4 气体对不同成矿阶段 Au 的沉淀和富集起到了积极而重要的作用。该矿床为中低温岩浆热液矿床。成矿物质主要来源于低岩浆,可能受围岩影响,表明成矿物质主要为岩浆热液矿床,少量地壳成分。流体的不混溶性和流体中的 CO2 和 CH4 气体对不同成矿阶段 Au 的沉淀和富集起到了积极而重要的作用。该矿床为中低温岩浆热液矿床。
更新日期:2018-08-29
down
wechat
bug