当前位置: X-MOL 学术Mathematika › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ON THE OSCILLATION OF THE MODULUS OF THE RUDIN–SHAPIRO POLYNOMIALS ON THE UNIT CIRCLE
Mathematika ( IF 0.8 ) Pub Date : 2019-11-26 , DOI: 10.1112/mtk.12004
Tamás Erdélyi 1
Affiliation  

Let either $R_k(t) := |P_k(e^{it})|^2$ or $R_k(t) := |Q_k(e^{it})|^2$, where $P_k$ and $Q_k$ are the usual Rudin-Shapiro polynomials of degree $n-1$ with $n=2^k$. In a recent paper we combined close to sharp upper bounds for the modulus of the autocorrelation coefficients of the Rudin-Shapiro polynomials with a deep theorem of Littlewood to prove that there is an absolute constant $A>0$ such that the equation $R_k(t) = (1+\eta )n$ has at least $An^{0.5394282}$ distinct zeros in $[0,2\pi)$ whenever $\eta$ is real and $|\eta| 0$, and sufficiently large $k \geq k_{\eta,\varepsilon}$.

中文翻译:

关于 RUDIN-SHAPIRO 多项式的模在单位圆上的振荡

让 $R_k(t) := |P_k(e^{it})|^2$ 或 $R_k(t) := |Q_k(e^{it})|^2$,其中 $P_k$ 和 $ Q_k$ 是通常的 $n-1$ 次 Rudin-Shapiro 多项式,其中 $n=2^k$。在最近的一篇论文中,我们将 Rudin-Shapiro 多项式的自相关系数的模数接近尖锐的上限与 Littlewood 的深层定理相结合,以证明存在绝对常数 $A>0$ 使得方程 $R_k( t) = (1+\eta )n$ 在 $[0,2\pi)$ 中至少有 $An^{0.5394282}$ 不同的零,只要 $\eta$ 是实数且 $|\eta| 0$,以及足够大的 $k \geq k_{\eta,\varepsilon}$。
更新日期:2019-11-26
down
wechat
bug