当前位置: X-MOL 学术Bioremed. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioaugmentation of endosulfan contaminated soil in artificial bed treatment using selected fungal species
Bioremediation Journal ( IF 1.9 ) Pub Date : 2019-07-03 , DOI: 10.1080/10889868.2019.1640183
Jyoti Bisht 1 , N. S. K. Harsh 2 , L. M. S. Palni 3 , Vasudha Agnihotri 4 , Anuj Kumar 5
Affiliation  

Abstract Pollutants when incorporated in the soil lead to adverse effect on soil quality. Bioaugmentation provides very attractive, eco-friendly, and economic solution to problems associated with hazardous pollutants. The present study conducted biodegradation potential of four fungal species namely; Cladosporium cladosporioides, Penicillium frequentans, Trametes hirsuta, and Trametes versicolor to degrade endosulfan in soil using artificial bed. Individual fungi as well as their consortium are able to degrade endosulfan in soil. Toxicological effect of endosulfan and its degradation products in soil fertility was also evaluated during study. To evaluate the toxicological effect of endosulfan and its degradation products in soil fertility, soil pH, total microbial population and the soil enzymes activity were also analyzed. At the end of 30 days of incubation period, maximum per cent degradation of endosulfan was observed in soil augmented with T. hirsuta (86.23%), followed by T. versicolor (67.35%) which was at par with fungal consortium (63.49%). Degradation of endosulfan in soil treated with C. cladosporioides and P. frequentans was 60.37% and 56.18%, respectively. In addition, degradation of endosulfan decreased in all treatments as its concentration increased in soil. All tested fungi degraded α-endosulfan more efficiently than β-endosulfan. At the end of experiment (after 30 days), maximum degradation of both isomers was recorded in soil augmented with T. hirsuta (α = 93.03 ± 2.86 and β = 79.42 ± 2.71%). Fungi which showed more endosulfan degradation also produced more endosulfan sulfate in soil. However, less endosulfan sulfate was recorded in T. hirsuta and T. versicolor, though they degraded endosulfan more efficiently. pH in natural soil (control) and abiotic control remain at par during the complete incubation period and ranged between 7.45 ± 0.03 to7.49 ± 0.01. In soil treated with T. hirsuta and T. versicolor, pH was decreased significantly to acidic range (6.44 ± 0.04 and 6.64 ± 0.01, respectively). In soil treated with fungal consortium, pH increased initially (7.57 ± 0.04), but later it was found to decrease (7.16 ± 0.03). Usually, after an initial toxic effect, mineralization of endosulfan leads to an increase in microbial populations and enzyme activities in bioaugmented soil, and the efficient fungi caused more pronounced increment.

中文翻译:

利用选定的真菌物种在人工床处理中对硫丹污染土壤进行生物强化

摘要 污染物进入土壤会对土壤质量产生不利影响。生物强化为与危险污染物相关的问题提供了非常有吸引力、生态友好和经济的解决方案。本研究对四种真菌物种进行了生物降解潜力;Cladosporium cladosporioides、Penicillium Federalans、Trametes hirsuta 和 Trametes versicolor 使用人工床降解土壤中的硫丹。单个真菌及其聚生体能够降解土壤中的硫丹。研究期间还评估了硫丹及其降解产物对土壤肥力的毒理学影响。为了评估硫丹及其降解产物对土壤肥力的毒理作用,还分析了土壤 pH 值、微生物总数和土壤酶活性。在 30 天的潜伏期结束时,观察到添加了毛毛虫的土壤中硫丹的降解百分比最高 (86.23%),其次是与真菌聚生体 (63.49%) 相同的花斑毛虫 (67.35%) . C. cladosporioides 和 P.frequencyans 处理的土壤中硫丹的降解率分别为 60.37% 和 56.18%。此外,随着硫丹在土壤中浓度的增加,所有处理中硫丹的降解都减少了。所有测试的真菌都比 β-硫丹更有效地降解 α-硫丹。在实验结束时(30 天后),两种异构体的最大降解记录在用 T. hirsuta 增强的土壤中(α = 93.03 ± 2.86 和 β = 79.42 ± 2.71%)。表现出更多硫丹降解的真菌也会在土壤中产生更多的硫丹硫酸盐。然而,在 T 中记录的硫丹硫酸盐较少。hirsuta 和 T. versicolor,尽管它们更有效地降解硫丹。在整个潜伏期内,天然土壤(对照)和非生物对照的 pH 值保持相同,范围在 7.45 ± 0.03 至 7.49 ± 0.01 之间。在用毛毛虫和杂色毛线虫处理的土壤中,pH 值显着降低至酸性范围(分别为 6.44 ± 0.04 和 6.64 ± 0.01)。在用真菌聚生体处理的土壤中,pH 值最初升高 (7.57 ± 0.04),但后来发现降低 (7.16 ± 0.03)。通常,在最初的毒性作用之后,硫丹的矿化导致生物强化土壤中微生物种群和酶活性的增加,而高效真菌引起更明显的增加。在整个潜伏期内,天然土壤(对照)和非生物对照的 pH 值保持相同,范围在 7.45 ± 0.03 至 7.49 ± 0.01 之间。在用毛毛虫和杂色毛线虫处理的土壤中,pH 值显着降低至酸性范围(分别为 6.44 ± 0.04 和 6.64 ± 0.01)。在用真菌聚生体处理的土壤中,pH 值最初升高 (7.57 ± 0.04),但后来发现降低 (7.16 ± 0.03)。通常,在最初的毒性作用之后,硫丹的矿化导致生物强化土壤中微生物种群和酶活性的增加,而高效真菌引起更明显的增加。在整个潜伏期内,天然土壤(对照)和非生物对照的 pH 值保持相同,范围在 7.45 ± 0.03 至 7.49 ± 0.01 之间。在用毛毛虫和杂色毛线虫处理的土壤中,pH 值显着降低至酸性范围(分别为 6.44 ± 0.04 和 6.64 ± 0.01)。在用真菌聚生体处理的土壤中,pH 值最初升高 (7.57 ± 0.04),但后来发现降低 (7.16 ± 0.03)。通常,在最初的毒性作用之后,硫丹的矿化导致生物强化土壤中微生物种群和酶活性的增加,而高效真菌引起更明显的增加。在用真菌聚生体处理的土壤中,pH 值最初升高 (7.57 ± 0.04),但后来发现降低 (7.16 ± 0.03)。通常,在最初的毒性作用之后,硫丹的矿化导致生物强化土壤中微生物种群和酶活性的增加,而高效真菌引起更明显的增加。在用真菌聚生体处理的土壤中,pH 值最初升高 (7.57 ± 0.04),但后来发现降低 (7.16 ± 0.03)。通常,在最初的毒性作用之后,硫丹的矿化导致生物强化土壤中微生物种群和酶活性的增加,而高效真菌引起更明显的增加。
更新日期:2019-07-03
down
wechat
bug