当前位置: X-MOL 学术Int. J. Mach. Tool Manu. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A unified process damping model considering the varying stiffness of the milling system
International Journal of Machine Tools and Manufacture ( IF 14.0 ) Pub Date : 2019-09-27 , DOI: 10.1016/j.ijmachtools.2019.103470
Jia Feng , Min Wan , Zi-Yu Dong , Wei-Hong Zhang

Existing process damping models only consider the effect of a single factor, i.e. either the velocity variation or the ploughing indentation, and thus cannot be used to reveal the dynamic behaviour of the milling process with varying stiffness. This article presents a unified process damping model by comprehensively considering multi-factors such as the cutting velocity, the ploughing indentation and the stiffness of the milling system. First, the actual cutting velocity is used to theoretically detect the effects of both shearing and ploughing mechanisms on process damping. Second, different from the previous relevant works that only used the boundaries of the nominal indented zone to calculate the indented volume, this model includes the deflections of the tool and workpiece to calculate the actual indented volume, and thus realizes characterizing the influence of the milling system’s stiffness on the ploughing force for the first time. Third, the weighting of the ploughing indentation and velocity change on process damping is analysed by introducing a concept of proportion factor, which is subsequently determined by theoretically formulating a calibration algorithm. Besides, an efficient approach to predict the vibration displacements and velocities of the tool-workpiece system, which are needed in solving the established process damping model, is developed. Finally, a series of milling tests with different stiffness proves the correctness of the proposed unified process damping model together with the embedded calibration and prediction algorithms.



中文翻译:

考虑铣削系统变化刚度的统一过程阻尼模型

现有的过程阻尼模型仅考虑单个因素的影响,即速度变化或刨痕,因此不能用于揭示刚度变化的铣削过程的动态行为。本文综合考虑了切削速度,刨痕和铣刨系统刚度等多种因素,提出了一个统一的过程阻尼模型。首先,实际切削速度用于理论上检测剪切和耕作机制对过程阻尼的影响。其次,与以前的相关工作不同,该工作仅使用名义压痕区的边界来计算压痕量,该模型包括工具和工件的挠度以计算实际压痕量,因此,首次实现了铣削系统刚度对耕犁力的影响表征。第三,通过引入比例因子的概念来分析耕作压痕和速度变化对过程阻尼的权重,比例因子的概念随后通过理论上制定校准算法来确定。此外,开发了一种有效的方法来预测工具-工件系统的振动位移和速度,这是解决已建立的过程阻尼模型所需要的。最后,一系列不同刚度的铣削测试证明了所提出的统一过程阻尼模型以及嵌入式校准和预测算法的正确性。通过引入比例因子的概念来分析耕作压痕的权重和速度变化对过程阻尼的影响,然后通过理论上制定校正算法来确定比例因子的概念。此外,开发了一种有效的方法来预测工具-工件系统的振动位移和速度,这是解决已建立的过程阻尼模型所需要的。最后,一系列不同刚度的铣削测试证明了所提出的统一过程阻尼模型以及嵌入式校准和预测算法的正确性。通过引入比例因子的概念来分析耕作压痕的权重和速度变化对过程阻尼的影响,然后通过理论上制定校正算法来确定比例因子的概念。此外,开发了一种有效的方法来预测工具-工件系统的振动位移和速度,这是解决已建立的过程阻尼模型所需要的。最后,一系列不同刚度的铣削测试证明了所提出的统一过程阻尼模型以及嵌入式校准和预测算法的正确性。开发了一种有效的方法来预测工具-工件系统的振动位移和速度,这是解决已建立的过程阻尼模型所需要的。最后,一系列不同刚度的铣削测试证明了所提出的统一过程阻尼模型以及嵌入式校准和预测算法的正确性。开发了一种有效的方法来预测工具-工件系统的振动位移和速度,这是解决已建立的过程阻尼模型所需要的。最后,一系列不同刚度的铣削测试证明了所提出的统一过程阻尼模型以及嵌入式校准和预测算法的正确性。

更新日期:2019-09-27
down
wechat
bug