当前位置: X-MOL 学术Finite Elem. Anal. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conductive-radiative heat transfer within SiC-based cellular ceramics at high-temperatures: A discrete-scale finite element analysis
Finite Elements in Analysis and Design ( IF 3.5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.finel.2020.103410
M.A. Badri , Y. Favennec , P. Jolivet , B. Rousseau

Abstract Cellular ceramic materials possess many favorable properties that allow to develop efficient modern-day high-temperature thermal energy conversion systems and processes. The energy conversion within these porous media is governed by tightly coupled conduction–radiation physics. To efficiently design and optimize these systems, a comprehensive understanding of the conduction–radiation behavior within these materials becomes important. In this study, by performing large-scale numerical experiments, we analyze the conduction–radiation coupling characteristics within different (with respect to topology and porosity) silicon carbide (SiC)-based open-cell cellular ceramics surrounded by fictitious vacuum up to temperatures of 1800 K. To induct minimal approximations, our finite element simulations are based on a discrete-scale approach within which realistic discrete (pore-level) representations of the cellular ceramics are used as numerical media. The results presented in this study provide means to better understand the role of radiation in the coupled conduction–radiation physics within the ceramic samples. A detailed comparison on effectiveness of energy conversion is established for SiC-based full-scale cubic-cell, Kelvin-cell, and pseudo-random-cell ceramic structures which are at 80% and 90% porosity each. In conclusion, among the different standalone and full-scale ceramic samples, the Kelvin-cell structures at 90% porosity have proven to benefit the most from radiation coupling.

中文翻译:

高温下 SiC 基蜂窝陶瓷内的传导-辐射传热:离散尺度有限元分析

摘要 蜂窝陶瓷材料具有许多有利的特性,可以开发高效的现代高温热能转换系统和工艺。这些多孔介质中的能量转换受紧密耦合的传导-辐射物理学控制。为了有效地设计和优化这些系统,全面了解这些材料中的传导-辐射行为变得很重要。在这项研究中,通过进行大规模数值实验,我们分析了不同(关于拓扑和孔隙率)碳化硅 (SiC) 基开孔蜂窝陶瓷内的传导-辐射耦合特性,这些陶瓷被虚拟真空包围,温度高达1800 K. 为了引入最小近似值,我们的有限元模拟基于离散尺度方法,其中将蜂窝陶瓷的真实离散(孔级)表示用作数字媒体。本研究中提出的结果提供了更好地理解辐射在陶瓷样品内耦合传导-辐射物理中的作用的方法。针对 80% 和 90% 孔隙率的 SiC 基全尺寸立方晶胞、开尔文晶胞和伪随机晶胞陶瓷结构,建立了能量转换效率的详细比较。总之,在不同的独立陶瓷样品和全尺寸陶瓷样品中,90% 孔隙率的开尔文电池结构已被证明从辐射耦合中获益最多。本研究中提出的结果提供了更好地理解辐射在陶瓷样品内耦合传导-辐射物理中的作用的方法。针对 80% 和 90% 孔隙率的 SiC 基全尺寸立方晶胞、开尔文晶胞和伪随机晶胞陶瓷结构,建立了能量转换效率的详细比较。总之,在不同的独立陶瓷样品和全尺寸陶瓷样品中,90% 孔隙率的开尔文电池结构已被证明从辐射耦合中获益最多。本研究中提出的结果提供了更好地理解辐射在陶瓷样品内耦合传导-辐射物理中的作用的方法。针对 80% 和 90% 孔隙率的 SiC 基全尺寸立方晶胞、开尔文晶胞和伪随机晶胞陶瓷结构,建立了能量转换效率的详细比较。总之,在不同的独立陶瓷样品和全尺寸陶瓷样品中,90% 孔隙率的开尔文电池结构已被证明从辐射耦合中获益最多。和伪随机单元陶瓷结构,其孔隙率分别为 80% 和 90%。总之,在不同的独立陶瓷样品和全尺寸陶瓷样品中,90% 孔隙率的开尔文电池结构已被证明从辐射耦合中获益最多。和伪随机单元陶瓷结构,其孔隙率分别为 80% 和 90%。总之,在不同的独立陶瓷样品和全尺寸陶瓷样品中,90% 孔隙率的开尔文电池结构已被证明从辐射耦合中获益最多。
更新日期:2020-10-01
down
wechat
bug